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Abstract. Let Ω be a piecewise-smooth, bounded convex domain in R2 and con-
sider L2-normalized Neumann eigenfunctions ϕλ with eigenvalue λ2. Our main result
is a small-scale non-concentration estimate: We prove that for any x0 ∈ Ω, (including
boundary and corner points) and any δ ∈ [0, 1),

∥ϕλ∥B(x0,λ−δ)∩Ω = O(λ−δ/2).

The proof is a stationary vector field argument combined with a small scale induction
argument.

1. introduction

In this paper, we consider Neumann eigenfunctions in planar domains and prove
a non-concentration estimate on shrinking balls, including at boundary and corner
points. Let Ω ⊂ R2 be a bounded, convex planar domain with boundary ∂Ω. We say
that Ω is piecewise smooth if the boundary ∂Ω = ∪N

j=1Γj such that there exist defining

functions fj ∈ C∞(R2;R) with

Γj ⊂ {x ∈ R2; fj(x) = 0, dfj(x) ̸= 0}.

We refer to the Γj ’s as the boundary edges. We say that a piecewise-smooth Ω is a
domain with corners if the Γj ’s are diffeomorphic to closed intervals with Γj ∩ Γj+1 =
cj ∈ R2; j = 1, ..., , N, such that at cj = Γj ∩ Γj+1,

rank (dfj(cj), dfj+1(cj)) = 2.

We refer to C := {cj}Nj=1 as the set of corner points and the rank condition on the
defining functions at the cj ’s ensures that the boundary edges Γj ; j = 1, ..., N intersect
at non-zero angles. We denote the angle at a corner cj by αj .

A fundamental issue regarding eigenfunctions involves their concentration properties
(or lack thereof) on small balls with radius that depends on the eigenvalue λ2 as λ→ ∞.

Let (M, g) be a compact Riemannian manifold without boundary and ϕλ a Laplace
eigenfunction with eigenvalue λ2. Then, as pointed out in [Sog16], using the explicit

asymptotic formula for the half-wave operator eit
√
−∆ : C∞(M) → C∞(M) it is not

hard to prove that there exists CM > 0 such that

∥ϕλ∥2L2(B(r)) = O(r)∥ϕλ∥2L2(M), ∀r ≥ CMλ
−1 (1)
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We refer to estimates of the form (1) as non-concentration bounds. The example
of highest weight spherical harmonics on the round sphere (see also Remark 5 below)
shows that (1) is, in general, sharp. However, in certain cases, one expects improve-
ments. For instance, in the case of surfaces with non-positive curvature, one can get
logarithmic improvements [Sog16] (see also [Han15, HR16]).

Since the proof of (1) uses the wave parametrix in a crucial way, the extension to
manifolds with boundary is non-obvious since the behaviour of the wave operators near
∂Ω is much more complicated than in the boundaryless case. The main result of this
paper is an extension of the bounds in (1) to Neumann eigenfunctions of a bounded
piecewise-smooth, convex planar domain. Our basic method of proof here is entirely
stationary and uses a Rellich commutator argument rather than wave methods. This
stationary approach allows us to deal with points on boundaries and corners as well
as interior points. We stress that our result below holds right up to the boundary,
including corner points.

In order to state the theorem, it is useful to switch to the standard semiclassical
notation with h = λ−1 so that asymptotics are estimated as h→ 0+.

Theorem 1. Let Ω ⊂ R2 be a piecewise C∞ bounded, convex domain and consider
the semiclassical Neumann eigenfunction problem:

−h2∆ϕh(x) = ϕh(x), x ∈ Ω,

∂νϕh|∂Ω = 0,

∥ϕh∥L2(Ω) = 1,

where ∂ν is the outward pointing normal derivative. Let p0 ∈ Ω be a point in Ω or on
the boundary (including corners). Then for any 0 ≤ δ < 1,

∥ϕh∥2L2(B(p0,hδ)∩Ω)
= O(hδ). (2)

Remark 1. We stress that this result holds at any point, including corners where
(possibly curved) transversal boundary components meet.

In the piecewise smooth case in the present paper, we assume the domain is convex
so that eigenfunctions are in H2. Blowup asymptotics (at least for Dirichlet eigen-
functions) at a non-convex corner show eigenfunctions need not be globally in H2 in
general.

Remark 2. In a forthcoming companion paper [CT23], we further investigate non-
concentration estimates at interior points, as well as analytic manifolds with analytic
boundary. Interestingly, if Ω is an analytic manifold with an analytic concave boundary,
then eigenfunctions can be extended past the boundary and the method for interior
points works. An example of such a manifold is a compact analytic Riemann surface
with several discs removed. On the other hand, if the boundary is not concave, the
extended eigenfunctions may exhibit too much growth to apply the interior method.

Remark 3. The theorem is also true for Dirichlet eigenfunctions, but the proof in
that case is much easier. We will point out the small modifications necessary to the
proof of Theorem 1 in the proof.
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Remark 4. As the proof will indicate, the bound for eigenfunction L2 mass in a ball
of radius hδ, 0 ≤ δ ≤ 1/2, is relatively straightforward. The cases where 0 ≤ δ < 1/2
follow immediately from the argument proving the δ = 1/2 case. To improve to
1/2 < δ < 1, we use the estimate for δ = 1/2 to bootstrap to δ = 2/3. Then an
induction step proves that for any integer k > 0, the result is true for δ = 1− 1/3k.

Remark 5. The estimate in Theorem 1 is sharp, at least for δ = 1/2. To see this,
let γ ⊂ Ω be a geodesic segment with γ = {(x′, xn = 0) ∈ Ω; |x′| < δ} and U =
{(x′, xn); |xn| < δ} be a tubular neighbourhood, where (x′, xn) : U → Rn are Fermi
coordinates. An L2-normalized Gaussian beam localized on γ is of the form

ϕh(x) = (2πh)−1/4e−x2
n/h eix

′/h ( a(x′, xn; ) +O(h) ); a ∈ C∞(U), |a(x)| > 0, x ∈ U.

It follows that

∥ϕh∥2B(0,h1/2)
∼

∫
|xn|≤h1/2

∫
|x′|<h1/2

|ϕh(x)|2 dx ∼ h1/2.

Consider the case where Ω = {(x, y); x2

a2
+ y2

b2
= 1, y ≥ 0} where a > b > 0 is the half-

ellipse and let ϕh be an L2-normalized Neumann eigenfunction. It is well-known (see
[TZ09] section 2.2) that there exists a subsequence of eigenfunctions that are Gaussian
beams along the major axis {(x, 0);−a ≤ x ≤ a}. Consequently, the estimate in
Theorem 1 is sharp in general. In the special case where the uh satisfy polynomial
small-scale quantum ergodicity (SSQE) on a scales h1/2, since the volume of a ball of

radius h1/2 is h, one putatively expects a bound of O(h) on the RHS in Theorem 1.
Unfortunately, to our knowledge, there are no rigorous results on polynomial SSQE
known at present, although logarithmic SSQE was proved by X. Han [Han15].

2. One point non-concentration in shrinking balls

Before jumping into the details of the proof of Theorem 1, let us sketch the main
intuitive idea. The result for interior points follows easily from the result for boundary
points, so we sketch the idea in the case of a point on a flat side; the analysis for a point
on a curved side and at a corner point will be in the full proof below. Suppose p0 is a
point on a flat side of ∂Ω, and assume for simplicity that ∂Ω = {y = 0} locally near

p0 and p0 = (0, 0). Let χ be a smooth monotone bounded function, χ(y) ∼ h−1/2y in

an h1/2 neighbourhood of y = 0, and constant outside a neighbourhood of size Mh1/2

for large M . Then χ′(y) is a bump function supported on −Mh1/2 ≤ y ≤ Mh1/2

with χ′(y) ∼ h−1/2 on −h1/2 ≤ y ≤ h1/2. We then apply a Rellich commutator type
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argument: ∫
Ω
([−h2∆− 1, χ∂y]ϕh)ϕhdV

= −2

∫
Ω
χ′(y)(h2∂2yϕh)ϕhdV +O(1)

= 2

∫
Ω
χ′|h∂yϕh|2dV +O(1)

⪆ h−1/2

∫
B((0,0),h1/2)∩Ω

|h∂yϕh|2dV −O(1).

Computing the commutator explicitly shows the left hand side is bounded. Adding
a similar computation with χ(x)∂x and rearranging would prove the theorem (for
δ = 1/2). A suitable h-dependent cutoff allows us to integrate by parts to go from
estimating ∥h∇ϕh∥L2(B) from below to estimating ∥ϕh∥L2(B) from below. Here the

O(1) error term is from differentiating χ twice: hχ′′ = O(1). This allows us to prove

the theorem at the limiting scale h1/2. The tricky part is using the δ = 1/2 result
to prove the result for δ = 2/3, and then applying an induction argument to get the
result for any δ < 1. Of course in this little sketch, the O(1) terms from integrating
by parts, etc. are actually very subtle in the case of Neumann eigenfunctions, and the
bulk of the proof is dealing with these “lower order terms”.

2.1. Notation and preliminaries. Let us first establish convenient coordinates for
the proof. In the case where p0 is on a smooth side away from a corner, we rotate,
translate, and use graph coordinates so that Γ ⊂ {y = α(x)} for locally smooth α,
p0 = (0, 0), and Ω lies below the curve y = α(x). We will eventually need to invert
y = α(x), so rotate further if necessary to assume that α′(0) = 1. Let β = α−1 so that
y = α(x) ⇐⇒ x = β(y) locally near (0, 0). We assume as before that Ω lies below
the curve y = α(x); that is, locally Ω ⊂ {(x, y); y < α(x)}.

Let κ = (1 + (α′)2)
1
2 be the arclength element with respect to x. Then the normal

and tangential derivatives are respectively

∂ν = −α
′

κ
∂x +

1

κ
∂y, ∂τ =

1

κ
∂x +

α′

κ
∂y (3)

so that

∂x =
1

κ
∂τ −

α′

κ
∂ν , ∂y =

α′

κ
∂τ +

1

κ
∂ν . (4)

Now in the case p0 is a corner, translate and rotate so that p0 = (0, 0), and ∂Ω locally
has two smooth sections. That is, after a rotation and translation, there exist locally
smooth functions α1 and α2 such that α1 is monotone increasing, α2 is monotone
decreasing, α′

1(0) > 0, and α′
2(0) < 0, and near (0, 0)

∂Ω = {y = α1(x); 0 ≤ x ≤ η} ∪ {y = α2(x); 0 ≤ x ≤ η}

for some η > 0 independent of h. We assume further that locally Ω lies to the right of
these sections (this is automatic due to convexity of Ω). Then locally each αj has an
inverse, which we denote βj . That is, near (0, 0), y = αj(x) ⇐⇒ x = βj(y).
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−3 −1 1 3

Figure 1. A sketch of the function χ̃ used in the proof of Theorem 1.

We will need to know the tangential and normal derivatives in these coordinates.
For the top section where y = α1(x), we have already computed in (3) and (4) with α

replaced by α1. For the bottom section where y = α2(x), let κ2 = (1+ (α′
2)

2)
1
2 so that

the tangent is τ = κ−1
2 (1, α′

2). Recalling that α′
2 < 0 near 0, the outward unit normal

then is ν = κ−1
2 (α′

2,−1). Hence

∂ν =
α′
2

κ2
∂x −

1

κ2
∂y, ∂τ =

1

κ2
∂x +

α′
2

κ2
∂y (5)

so that

∂x =
1

κ2
∂τ +

α′
2

κ2
∂ν , ∂y =

α′
2

κ2
∂τ −

1

κ2
∂ν . (6)

In the following, we will employ a number of convenient spatial cutoff functions that
we introduce here.

Let χ̃(s) ∈ C∞(R) satisfy the following conditions:

• χ̃ is odd,
• χ̃′ ≥ 0,
• χ̃(s) ≡ −1 for s ≤ −3 and χ̃(s) ≡ 1 for s ≥ 3,
• χ̃(−1) = −1/2 and χ̃(1) = 1/2,
• χ̃(s) = s

2 for −1 ≤ s ≤ 1.

See Figure 1 for a picture. Let γ(s) = χ̃′(s) so that γ has support in {−3 ≤ s ≤ 3},
γ(s) ≥ 0, and γ(s) ≡ 1/2 for |s| ≤ 1.

In the following, it will also be useful to define the corresponding semiclassically
rescaled functions

χ̃δ(s) := χ̃(h−δs), γδ(s) := γ(h−δs), δ ∈ [0, 1].

Choose also a smooth bump function ψ̃(s) ∈ C∞(R) satisfying
• ψ̃(s) is even and ψ̃′ ≤ 0 for s ≥ 0,

• ψ̃(s) ≡ 1 for −1 ≤ s ≤ 1,

• ψ̃(s) ≡ 0 for |s| ≥ 2.

In the sequel, we will need some a priori estimates on our eigenfunctions on the
boundary. This is summarized in the following Lemma, which follows from the work
of Grisvard [Gri11] on convex domains combined with Sobolev embedding.
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Lemma 2. The Neumann eigenfunctions ϕh satisfy the following estimates:

(1) ϕh ∈ H2(Ω);
(2) ϕh ∈ C∞(Ω), and ϕh ∈ C∞(Ω \ C) where C is the set of corner points as usual;

and
(3) for each h > 0, there exists a constant Ch such that |ϕh| ≤ Ch on Ω.

The meaning of the third assertion is that the eigenfunctions do not blow up at
corners, even though the “constant” Ch may be very large as h→ 0. We will use this
when integrating by parts along the boundary of Ω.

We will also need a Sobolev type estimate in shrinking neighbourhoods of corners.

Lemma 3. Let η ≥ h and suppose ζ(x) is a smooth function satisfying supp ζ ⊂ {|x| ≤
η} satisfying ∂kxζ = O(η−k). Then∫ η

0
ζ(x)|ϕh|2(x, α1(x))dx = O(h−1)

∫
Ω∩{|x|≤3η}

|ϕh|2dV.

Remark 6. The statement for the lower segment y = α2(x) is similar. Here the choice
of 3η is for convenience in the proof. Any domain wider than η will work as well.

Proof. The proof in the case of a smooth side follows from the more difficult proof in
the case of a corner, so we will just prove the corner case. In the coordinates above,
we are interested in the boundary traces in a η > 0 neighbourhood of (0, 0). Let

E(x) =

∫ α1

0
|ϕh|2dy

and compute

E′(x) = α′
1(x)|ϕh|2(x, α1(x)) + 2Re

∫ α1

0
(∂xϕh)ϕ̄hdy.

From Lemma 2, we know that E(0) = 0. Then if ζ̃(x) is a smooth function such that

ζ̃(x) ≡ 0 for x ≥ η and ∂kx ζ̃ = O(η−k), we have∫ η

0
ζ̃(x)E′(x)dx = −

∫ η

0
ζ̃ ′(x)E(x)dx+ ζ̃(η)E(η)− ζ̃(0)E(0)

= −
∫ η

0
ζ̃ ′(x)E(x)dx

= −
∫ η

0
ζ̃ ′(x)

∫ α1

0
|ϕh|2dydx

= O(η−1)

∫ δ

0

∫ α1

0
|ϕh|2dydx. (7)

On the other hand, using Cauchy’s inequality with parameter, we have∫ η

0
ζ̃(x)E′(x)dx =

∫ η

0
ζ̃(x)(α′

1(x)|ϕh|2(x, α1(x))dx+ 2Re

∫ η

0

∫ α1

0
ζ̃(x)(∂xϕh)ϕ̄hdy)dx

=

∫ η

0
ζ̃(x)α′

1(x)|ϕh|2dx+O(1)

∫ η

0

∫ α1

0
h−1(|h∂xϕh|2 + |ϕh|2)dydx.

(8)
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Rearranging (8), we have∫ η

0
ζ̃(x)α′

1(x)|ϕh|2(x, α1(x))dx =

∫ η

0
ζ̃(x)E′(x)dx+O(h−1)

∫ η

0

∫ α1

0
(|h∂xϕh|2 + |ϕh|2)dydx

= O(h−1)

∫ η

0

∫ α1

0
(|h∂xϕh|2 + |ϕh|2)dydx (9)

from (7) since η ≥ h.
Now let Γ(x) be a smooth bump function with Γ(x) ≡ 1 for |x| ≤ η with support in

{|x| ≤ 2η} and ∂kxΓ = O(η−k). Let Γ̃ be a smooth bump function such that Γ̃ ≡ 1 for

|x| ≤ 2η with support in {|x| ≤ 3η} and ∂kxΓ̃ = O(η−k). Let

I =

∫
Ω
Γ2(x)|h∂xϕh|2dV

so we have ∫ η

0

∫ α1

0
|h∂xϕh|2dydx

≤ I

≤
∫
Ω
Γ2(x)(|h∂xϕh|2 + |h∂xϕh|2)dV

=

∫
Ω
Γ2(x)(−h2∆ϕh)ϕ̄hdV

− 2

∫
Ω
hΓ′(x)Γ(x)(h∂xϕh)ϕ̄hdV. (10)

The last term in (10) is estimated using Cauchy’s inequality with small parameter
c > 0 independent of h and η:∣∣∣∣∣

∫
Ω
hΓ′(x)Γ(x)(h∂xϕh)ϕ̄hdV

∣∣∣∣∣
≤ C

h

η

∫
Ω
Γ̃|Γ(x)h∂xϕh||ϕh|dV

= C

∫
Ω
|Γh∂xϕh||

h

η
Γ̃ϕh|dV

≤ C

∫
Ω
(cΓ2|h∂xϕh|2)dV + C

∫
Ω
(c−1Γ̃2|h

η
ϕh|2)dV

≤ 1

2
I + C

h2

η2

∫
Ω
Γ̃2|ϕh|2dV

for c > 0 sufficiently small, but independent of h and η. This gives the estimate

I ≤
∫
Ω
Γ2(x)(−h2∆ϕh)ϕ̄hdV +

1

2
I + C

h2

η2

∫
Ω
Γ̃2|ϕh|2dV

≤ C

∫
Ω
Γ̃2|ϕh|2dV +

1

2
I,
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where we have used the eigenfunction equation and h ≤ η. Solving for I gives

I ≤ C

∫
Ω
Γ̃2|ϕh|2dV.

Plugging this estimate into the right hand side of (9), we have∫ δ

0
ζ̃(x)α′

1(x)|ϕh|2dx = O(h−1)

∫ δ

0

∫ α1

0
(|h∂xϕh|2 + |ϕh|2)dydx

= O(h−1)

∫
Ω
Γ̃2|ϕh|2dV. (11)

Finally, recall that α′
1(x) > 0 is bounded away from 0 in a neighbourhood of x = 0, so

that ζ̃ = ζ/α′
1 is a smooth function satisfying the correct properties. This completes

the proof.
□

2.2. The piecewise-smooth case: Proof of Theorem 1.

Proof of Theorem 1. The proof will proceed by looking at smooth (not necessarily flat)
boundary pieces away from corners and at corners separately, although the proof for
corners has much in common with smooth sides.

The proof has several steps. First we establish the result for δ = 1/2. The proof for
0 ≤ δ < 1/2 is similar (and easier), so we omit the details. Then we use the δ = 1/2
estimate to bootstrap the δ = 2/3 estimate. Again, for 1/2 < δ < 2/3, the proof is the
same as for δ = 2/3 (but again easier). Our final step is an induction to prove that for
any integer k > 0 the result is true for δ = 1− 1/3k.

2.2.1. Analysis away from corner points. We first consider a boundary point p0 which
is on a smooth (not necessarily flat) component of the boundary Γ away from corners.
We continue to work in coordinates from Subsection 2.1.

For ϵ > 0 sufficiently small but independent of h, let

χ(x, y) = χ̃(x/h1/2)ψ̃(x/ϵ)ψ̃(y/ϵ). (12)

If ϵ > 0 is sufficiently small, we may assume that supp (χ|∂Ω) ⊂ Γ. We have

χ(x, y) = x/2h1/2 for −h1/2 ≤ x ≤ h1/2 and −ϵ ≤ y ≤ ϵ. We use the short hand
notation χx := ∂xχ, χy := ∂yχ, so suppχx consists of three connected components,

one near zero, one near −ϵ, and one near ϵ. Note: since χ̃(x/h1/2) is constant for

x ≤ −3h1/2 and x ≥ 3h1/2, we have that χx depends on h for −3h1/2 ≤ x ≤ 3h1/2,
but on the set {|x| ≥ ϵ}, χx = ϵ−1χ̃(x/h1/2)ψ̃′(x/ϵ)ψ̃(y/ϵ) = ±ϵ−1ψ̃′(x/ϵ)ψ̃(y/ϵ) is
independent of h. This means that

χx(x, y) ≥ h−1/2γ(x/h1/2)γ(y/h1/2)−O(1) (13)

so that, in particular, χx ≥ h−1/2/4 on B((0, 0), h1/2).
In order to ease notation, let r > 0 be a small parameter not depending on h such

that r ≫ ϵ but a r neighbourhood of (0, 0) still does not meet any corners. This is just
so that integrating in [−r, r]2 ∩ Ω includes the full support of χ inside Ω. See Figure
2 for a picture.
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(0, 0)

y = α(x)

χ ≡ χ̃(x/h
1
2 )

supp (χ)

Figure 2. Ω in a neighbourhood of a point on a smooth side and the
function χ.

We will use a Rellich-type commutator argument, but terms that appear “lower
order” have non-trivial dependence on h and are not really lower order. We have

[−h2∆, χ∂x] = −2χxh
2∂2x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x,

so integrating over Ω we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
Ω
((−2χxh

2∂2x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x)ϕh)ϕhdV. (14)

We recall the standard identity for first order derivatives:∫
Ω
|h∇ϕh|2dV =

∫
Ω
(−h2∆ϕh)ϕhdV = 1,

which we use to estimate the lower order terms. Since χxx = O(h−1) and χy and χyy

are bounded independent of h, we have∣∣∣∣∫
Ω
(hχxxh∂xϕh)ϕhdV

∣∣∣∣ ≤ C

∫
(|h∂xϕh|2 + |ϕh|2)dV = O(1),

and similarly ∣∣∣∣∫
Ω
(hχyyh∂yϕh)ϕhdV

∣∣∣∣ = O(1).
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For the mixed derivative term, we have∫
Ω
χy(h∂xh∂yϕh)ϕhdV

=

∫ r

−r

∫ α(x)

−r
χy(h∂yh∂xϕh)ϕhdydx

= −
∫ r

−r

∫ α(x)

−r
(h∂xϕh)(hχyyϕh + χyh∂yϕh)dydx

+

∫ r

−r
hχy(h∂xϕh)ϕh|

α(x)
−r dx.

For the boundary term, the support properties of χ means∫ r

−r
hχy(h∂xϕh)ϕh|

α(x)
−r dx =

∫ r

−r
hχy(h∂xϕh)ϕh(x, α(x))dx.

Along the face y = α(x), we have h∂xϕh = κ−1h∂τϕh, so, in tangent coordinates,∫ r

−r
hχy(h∂xϕh)ϕh(x, α(x))dx

=

∫
hχyκ

−1(h∂τϕh)ϕhdS

=
h2

2

∫
χyκ

−1∂τ |ϕh|2dS

= −h
2

2

∫
(∂τχyκ

−1)|ϕh|2dS. (15)

The function ∂τχyκ
−1 = O(h−1/2), so, using the standard h-Sobolev estimates,∣∣∣∣h22

∫
(∂τχyκ

−1)|ϕh|2dS
∣∣∣∣

= O(h1/2)

∫
Ω
(|h∇ϕh|2 + |ϕh|2dV )

= O(h1/2). (16)

This implies ∫
Ω
χy(h∂xh∂yϕh)ϕhdV = O(1),

so that (14) becomes ∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

= −2

∫
Ω
(χxh

2∂2xϕh)ϕhdV +O(1).
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Now inside Ω, suppχx ⊂ {(x, y);β(y) < x < r, |y| < r}, by an integration by parts,

−2

∫
Ω
(χxh

2∂2xϕh)ϕhdV

= −2

∫ r

−r

∫ r

β(y)
(χxh

2∂2xϕh)ϕhdxdy

= 2

∫ r

−r

∫ r

β(y)
(χxh∂xϕh)h∂xϕhdxdy

+ 2

∫ r

−r

∫ r

β(y)
h(χxxh∂xϕh)ϕhdxdy

− 2

∫ r

−r
((hχxh∂xϕh)ϕh) |rβ(y)dy

= 2

∫ r

−r

∫ r

β(y)
χx|h∂xϕh|2dxdy

− 2

∫ r

−r
(h(χxh∂xϕh)ϕh) |rβ(y)dy +O(1), (17)

where we have again used that χxx = O(h−1). Unfortunately, as χx = O(h−1/2), the
boundary term is not necessarily bounded in the Neumann case.

However, we will see that the largest part cancels with a similar boundary term
when we run a similar argument for a vector field in the ∂y direction. Let

I1 = −2

∫ r

−r
((hχxh∂xϕh)ϕh) |x=r

x=β(y)dy

be the boundary term from (17). Using the support properties of χx, we have χx(r, y) =
0, so that

I1 = 2

∫ r

−r
((hχxh∂xϕh)ϕh) (β(y), y)dy.

We now change variables y = α(x) so that

I1 = 2

∫ r

−r
((hχxh∂xϕh)ϕh) (x, α(x))α

′dx. (18)

We will return to this shortly.
Consider now the function

ρ(x, y) := α′(x)χ̃(β(y)/h1/2)ψ̃(x/ϵ)ψ̃(y/ϵ). (19)

We have

[−h2∆− 1, ρ∂y] = −2ρyh
2∂2y − hρyyh∂y − 2ρxh∂yh∂x − hρxxh∂y.

Again, since ρyy = O(h−1) and ρx and ρxx are bounded, we have∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV = −2

∫
Ω
(ρyh

2∂2yϕh)ϕhdV +O(1).
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We again integrate by parts, but now in the y direction. We have

−2

∫
Ω
(ρyh

2∂2yϕh)ϕhdV

= −2

∫ r

−r

∫ α(x)

−r
(ρyh

2∂2yϕh)ϕhdydx

= 2

∫ r

−r

∫ α(x)

−r
ρy|h∂yϕh|2dydx

+ 2

∫ r

−r

∫ α(x)

−r
(hρyyh∂yϕh)ϕhdydx

− 2

∫ r

−r
((hρyh∂yϕh)ϕh) |

α(x)
−r dx

= 2

∫ r

−r

∫ α(x)

−r
(ρyh∂yϕh)h∂yϕhdydx

− 2

∫ r

−r
((hρyh∂yϕh)ϕh) (x, α(x))dx+O(1). (20)

Here we have again used that ρyy = O(h−1) and that ρy(x,−r) = 0.
Now let

I2 = −2

∫ r

−r
((hρyh∂yϕh)ϕh) (x, α(x))dx (21)

be the boundary term from (20). We observe that

ρy = α′(x)β′(y)h−1/2χ̃′(β(y)/h1/2)ψ̃(x/ϵ)ψ̃(y/ϵ) +O(1).

In (20), we are evaluating at y = α(x), so we get

ρy(x, α(x)) = α′(x)β′(α(x))h−1/2χ̃′(x/h1/2)ψ̃(x/ϵ)ψ̃(α(x)/ϵ) +O(1)

= χx(x, α(x)) +O(1) (22)

with χ as in (12). Substituting into (21), we have

I2 = −2

∫ r

−r
((hχxh∂yϕh)ϕh) (x, α(x))dx+O(1).

We now use the Neumann boundary conditions. We have

0 = ∂νϕh(x, α(x))

= −α
′

κ
∂xϕh(x, α(x)) +

1

κ
∂yϕh(x, α(x)) (23)

so that α′∂xϕh(x, α(x)) = ∂yϕh(x, α(x)). Substituting into (18), we have
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I1 + I2 = 2

∫ r

−r
((hχxh∂xϕh)ϕh) (x, α(x))α

′dx

− 2

∫ r

−r
((hρyh∂yϕh)ϕh) (x, α(x))dx

= 2

∫ r

−r
((hχxh∂xϕh)ϕh) (x, α(x))α

′dx

− 2

∫ r

−r
((hχxh∂yϕh)ϕh) (x, α(x))dx+O(1)

= O(1). (24)

Summing (17) and (20) we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

= 2

∫
Ω
χx|h∂xϕh|2dV + 2

∫
Ω
ρy|h∂yϕh|2dV +O(1).

From (13) we have

χx ≥ h−1/2γ(x/h1/2)γ(y/h1/2)−O(1),

and similarly there is a constant c0 > 0 independent of h such that

ρy ≥ c0h
−1/2γ(x/h1/2)γ(y/h1/2)−O(1).

Let c1 = min(1, c0) so that∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

≥ c1

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(|h∂xϕh|2 + |h∂yϕh|2)dV −O(1)

= c1

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(−h2∂2xϕh − h2∂2yϕh)ϕhdV

+ c1h

∫
∂Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(h∂νϕh)ϕhdS −O(1)

= c1

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)|ϕh|2dV −O(1), (25)

where, in the last line of (25), we have used the eigenfunction equation and the Neu-
mann boundary conditions. Since

c1

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)|ϕh|2dV ≥ c1

4

∫
B(p0,h1/2)

h−1/2|ϕh|2dV,
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we have

c1
4

∫
B(p0,h1/2)

h−1/2|ϕh|2dV ≤
∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV +O(1). (26)

On the other hand, expanding the commutator, using the eigenfunction equation,
and integrating by parts, we have

∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
Ω
((−h2∆− 1)χ∂xϕh)ϕhdV −

∫
Ω
(χ∂x(−h2∆− 1)ϕh)ϕhdV

=

∫
Ω
(χ∂xϕh)((−h2∆− 1)ϕh)dV −

∫
∂Ω

(h∂νχh∂xϕh)ϕhdS

+

∫
∂Ω

(χh∂xϕh)(h∂νϕh)dS

= −
∫
∂Ω

(h∂νχh∂xϕh)ϕhdS. (27)

Using (3), (4), and the Neumann boundary conditions, we have

h∂νχh∂xϕh =

(
−α

′

κ
h∂x +

1

κ
h∂y

)
χh∂xϕh

=

(
−α

′

κ
hχx +

1

κ
hχy

)
h∂xϕh

+ χh∂νh∂xϕh

=

(
−α

′

κ
hχx +

1

κ
hχy

)(
1

κ

)
h∂τϕh

− χ
α′

κ
h2∂2νϕh +O(h)h∂τϕh

= −α′

κ2
hχxh∂τϕh − χ

α′

κ
h2∂2νϕh +O(h)h∂τϕh. (28)

Remark 7. Here is where we see that dealing with the boundary terms for the Neu-
mann eigenfunctions is significantly more difficult than in the case of Dirichlet eigen-
functions. Indeed, in the easier case of Dirichlet eigenfunctions, since Ω is convex,∫
∂Ω |h∂νϕh|2dS is bounded and the integrand has a sign.
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Plugging (28) into (27) and using integration by parts and Sobolev embedding for
the O(h) terms as we did in (15)-(16), we have∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2νϕh

)
ϕhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τϕh

)
ϕhdS +O(1).

A similar computation gives∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

= −
∫
∂Ω

(
ρ
1

κ
h2∂2νϕh

)
ϕhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τϕh

)
ϕhdS +O(1).

Recalling that

ρ(x, α(x)) = α′χ(x, α(x))

and

ρy(x, α(x)) = χx(x, α(x)) +O(1),

we sum: ∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2νϕh

)
ϕhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τϕh

)
ϕhdS

−
∫
∂Ω

(
ρ
1

κ
h2∂2νϕh

)
ϕhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τϕh

)
ϕhdS +O(1)

= O(1), (29)

since the displayed terms on the RHS of (29) all cancel.
Finally, equating (26) with (29), we get∫

B(p0,h1/2)
h−1/2|ϕh|2dV = O(1)

as asserted.
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(0, 0)

y = α1(x)
χ ≡ χ̃(x/h

1
2 )

y = α2(x)

ρ1 ≡ α′
1χ̃(β1(y)/h

1
2 )

ρ2 ≡ α′
2χ̃(β2(y)/h

1
2 )

Figure 3. Ω in a neighbourhood of a corner and the functions χ, ρ1,
and ρ2.

2.2.2. Analysis near corner points. We now consider the case where p0 is a corner.
For ϵ > 0 sufficiently small, let χ(x, y) be the same as in (12). We again use a param-

eter r ≫ ϵ but sufficiently small that [−r, r]2 does not meet any other corners. Again,
this is just to ease notation in our integral expressions. Applying the same commutator
argument as in the smooth boundary segment case, the interior computations are the
same, we just need to check what happens on the boundary. The key difference from
the case with no corners is that boundary integrals have to be considered piecewise.
See Figure 3 for a picture of the setup.

Integrating by parts in the x direction on the interior terms, we have:

∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV = −2

∫
Ω
χx(h

2∂2xϕh)ϕhdV +O(1)

= −2

∫ 0

−r

∫ r

x=β2(y)
χx(h

2∂2xϕh)ϕhdxdy

− 2

∫ r

0

∫ r

x=β1(y)
χx(h

2∂2xϕh)ϕhdxdy +O(1)

=: I1 + I2 +O(1).
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Let us examine I1 first:

I1 = 2

∫ 0

−r

∫ r

β2(y)
hχxx(h∂xϕh)ϕhdxdy + 2

∫ 0

−r

∫ r

β2(y)
χx(|h∂xϕh|2)dxdy

− 2

∫ 0

y=−r
hχx(h∂xϕh)ϕh|x=r

x=β2(y)
dy

= 2

∫ 0

−r

∫ r

β2(y)
χx|h∂xϕh|2dxdy

+ 2

∫ 0

y=−r
(hχx(h∂xϕh)ϕh)(β2(y), y)dy +O(1),

since χ has support in x ≤ 2ϵ≪ r, and hχxx = O(1).
Similarly,

I2 = 2

∫ r

0

∫ r

β1(y)
χx(|h∂xϕh|2dxdy

+ 2

∫ r

0
(hχx(h∂xϕh)ϕh)(β1(y), y)dy +O(1).

Summing, we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

= I1 + I2 +O(1)

= 2

∫
Ω
χx|h∂xϕh|2dxdy

+ 2

∫ 0

y=−r
(hχx(h∂xϕh)ϕh)(β2(y), y)dy

+ 2

∫ r

y=0
(hχx(h∂xϕh)ϕh)(β1(y), y)dy +O(1).

For the two boundary terms, we change variables y = α2(x) and y = α1(x) respectively
to get ∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

= 2

∫
Ω
χx(|h∂xϕh|2dxdy − 2

∫ r

0
α′
2(x)(hχx(h∂xϕh)ϕh)(x, α2(x))dx

+ 2

∫ r

0
α′
1(x)(hχx(h∂xϕh)ϕh)(x, α1(x))dx+O(1). (30)

Note the sign change on the second integral to correct for reversed orientation in the
x direction.

We now want to employ a similar argument with ∂y. However, our function ρ cannot
be globally defined if we want to write ρ in terms of χ on the boundary, since we are
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not assuming any relation between α1 and α2. Let

Ω1 = Ω ∩ {x ≤ r} ∩ {y ≥ 0},

and

Ω2 = Ω ∩ {x ≤ r} ∩ {y ≤ 0}

be the top and bottom parts of Ω near (0, 0). For j = 1, 2, let

ρj(x, y) := α′
j(xy/αj(x))χ̃(βj(y)/h

1
2 )ψ̃(x/ϵ)ψ̃(y/ϵ), j = 1, 2. (31)

See Figure 3 for a picture of the setup. The choice of argument xy/αj(x) in (31) is
for some cancellation at y = αj(x) and y = 0. The way we have chosen coordinates
ensures that x/αj(x) is smooth and bounded in our domain.

Let us record some facts about the ρj ’s. First, along y = αj , j = 1, 2, we have

ρj(x, αj(x)) = α′
j(x)χ̃(x/h

1
2 )ψ̃(x/ϵ)ψ̃(αj(x)/ϵ) = α′

jχ(x, αj(x)). (32)

Along y = 0, ρj = 0, since χ̃ is an odd function and βj(0) = 0 for j = 1, 2. Along
y = αj ,

∂yρj(x, αj(x)) = h−
1
2α′

j(x)β
′
j(αj(x))χ̃

′(x/h
1
2 )ψ̃(x/ϵ)ψ̃(αj(x)/ϵ) +Aj +O(1)

= h−
1
2 χ̃′(x/h

1
2 )ψ̃(x/ϵ)ψ̃(αj(x)/ϵ) +Aj +O(1)

= ∂xχ(x, αj(x)) +Aj +O(1).

Here Aj is the term we get when the derivative lands on the α′
j(xy/αj(x)):

Aj = (x/αj(x))α
′′
j (xy/αj(x))χ̃(βj(y)/h

1
2 )ψ̃(x/ϵ)ψ̃(y/ϵ).

Along y = αj , this reduces to

Aj = (x/αj(x))α
′′
j (x)χ̃(x/h

1
2 )ψ̃(x/ϵ)ψ̃(αj(x)/ϵ).,

and along y = 0, Aj = 0.

Remark 8. We single out the behaviour of Aj because it is still singular due to the

χ̃(βj/h
1
2 ). Indeed, we have Aj = χ̃(x/h

1
2 )Aj1 where

∂kxAj1 = O(1).

Here the implicit O(1) errors come from differentiating the ψ̃ functions and are sup-

ported away from the corner. We know χ̃(βj(y)/h
1
2 ) vanishes at x = y = 0, and we

will use these two observations to integrate by parts along the boundary.

Finally, along y = 0, we have χ̃′(0) = 1/2 and ψ̃′(0) = 0, so that

∂yρj(x, 0) = h−
1
2 χ̃′(0)ψ̃(x/ϵ)ψ̃(0) +O(1) (33)

= (h−1/2/2)ψ̃(x/ϵ) +O(1). (34)
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Now consider the vector field ρ1∂y on Ω1. The same commutator computation and
integrations by parts in y yields the following:

∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV

= −2

∫
Ω1

ρ1,y(h
2∂2yϕh)ϕhdV +O(1)

= −2

∫ r

x=0

∫ y=α1(x)

y=0
ρ1,y(h

2∂2yϕh)ϕhdydx+O(1)

= 2

∫ r

x=0

∫ y=α1(x)

y=0
ρ1,y|h∂yϕh|2dydx− 2

∫ r

x=0
hρ1,y(h∂yϕh)ϕh|

y=α1(x)
y=0 dx+O(1)

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dydx− 2

∫ r

x=0
(hρ1,y(h∂yϕh)ϕh)(x, α1(x))dx

+ 2

∫ r

x=0
(hρ1,y(h∂yϕh)ϕh)(x, 0)dx+O(1)

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dydx

− 2

∫ r

x=0
(h(χx +Aj)(h∂yϕh)ϕh)(x, α1(x))dx

+ 2

∫ r

x=0
(h−1/2/2)ψ̃(x/ϵ)(h(h∂yϕh)ϕh)(x, 0)dx+O(1). (35)

In order to estimate the term with Aj in (35), first rewrite the integral in tangent
coordinates τ :

∫ r

x=0
(hAj(h∂yϕh)ϕh)(x, α1(x))dx =

∫ r

τ=0
hÃj(τ)(h∂τϕj)ϕ̄hdτ

where Ãj is Aj written in tangent coordinates together with the arclength factors after
changing variables. The precise form is not important, just that it satisfies the same
order of estimates as Aj . Continuing, using Remark 8:

∫ r

τ=0
hÃj(τ)(h∂τϕh)ϕ̄jdτ =

h2

2

∫ r

0
Ãj∂τ |ϕh|2dτ

= −h
2

2

∫ r

0
(∂τ Ãj)|ϕh|2dτ

= O(h1/2) (36)
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from Lemma 3 with η > 0 small but independent of h. Inserting this estimate into
(35), we have∫

Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV (37)

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dV − 2

∫ r

x=0
(hχx(h∂yϕh)ϕh)(x, α1(x))dx

+ h
1
2

∫ r

x=0
ψ̃(x/ϵ)(h∂yϕh)ϕh(x, 0)dx+O(1). (38)

A similar computation on Ω2 using the vector field ρ2∂y gives∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= −2

∫
Ω2

ρ2,y(h
2∂2yϕh)ϕhdV +O(1)

= −2

∫ r

x=0

∫ y=0

y=α2

ρ2,y(h
2∂2yϕh)ϕhdydx+O(1)

= 2

∫ r

x=0

∫ y=0

y=α2

ρ2,y|h∂yϕh|2dydx− 2

∫ r

x=0
hρ1,y(h∂yϕh)ϕh|y=0

y=α2
dx+O(1)

= 2

∫
Ω2

ρ2,y|h∂yϕh|2dV − h
1
2

∫ r

x=0
ψ̃(x/ϵ)(h∂yϕh)ϕh(x, 0)dx

+ 2

∫ r

x=0
hχx(h∂yϕh)ϕh(x, α2(x))dx+O(1). (39)

Summing (38) and (39) and making the obvious cancellations, we have∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dV + 2

∫
Ω2

ρ2,y|h∂yϕh|2dV

− 2

∫ r

x=0
(hχx(h∂yϕh)ϕh)(x, α1(x))dx

+ 2

∫ r

x=0
hχx(h∂yϕh)ϕh(x, α2(x))dx+O(1). (40)

We now use the Neumann boundary conditions on ϕh and sum (30) and (40). On
the top segment where y ≥ 0, we have (3) and (4) so

0 = ∂νϕh = −α
′
1

κ1
∂xϕh +

1

κ1
∂yϕh.
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Then ∂yϕh = α′
1∂xϕh on the upper section. Similarly, on the bottom section we have

(5) and (6) so that ∂yϕh = α′
2∂xϕh. Consequently, (40) becomes∫

Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dV + 2

∫
Ω2

ρ2,y|h∂yϕh|2dV

− 2

∫ r

x=0
(hχx(α

′
1h∂xϕh)ϕh)(x, α1(x))dx

+ 2

∫ r

x=0
hχx(α

′
2h∂xϕh)ϕh(x, α2(x))dx+O(1). (41)

Now summing (30) and (41) and making the obvious cancellations, we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= 2

∫
Ω
χx(|h∂xϕh|2dV + 2

∫
Ω1

ρ1,y|h∂yϕh|2dV + 2

∫
Ω2

ρ2,y|h∂yϕh|2dV +O(1).

(42)

It remains to compute the commutators on the LHS of (42). By Green’s formula,∫
Ω
([−h2∆− 1, χ(x, y)∂x]ϕh)ϕhdV = −

∫
∂Ω

(h∂νχh∂xϕh)ϕhdS

and for j = 1, 2∫
Ωj

([−h2∆− 1, ρj(x, y)∂y]ϕh)ϕhdV

= −
∫
∂Ωj

(h∂νρjh∂yϕh)ϕhdS +

∫
∂Ωj

(ρjh∂yϕh)(h∂νϕh)dS

= −
∫
∂Ωj

(h∂νρjh∂yϕh)ϕhdS.

Here the second integral in the second line is zero since ϕh has Neumann boundary
conditions along the boundary y = α1, and ρj = 0 along the line y = 0.

On the upper segment, we use that ∂ν = −α′
1

κ1
∂x + 1

κ1
∂y, and ∂x = 1

κ1
∂τ −

α′
1

κ1
∂ν to

get

h∂νχh∂xϕh = χh∂xh∂νϕh + [h∂ν , χh∂x]ϕh

= −α
′
1

κ1
χh2∂2νϕh −

α′
1

κ21
hχxh∂τϕh +O(h)h∂τϕh.

Similarly, on the lower segment, ∂ν =
α′
2

κ2
∂x − 1

κ2
∂y and ∂x = 1

κ2
∂τ +

α′
2

κ2
∂ν so that

h∂νχh∂xϕh =
α′
2

κ2
χh2∂2νϕh +

α′
2

κ22
hχxh∂τϕh +O(h)h∂τϕh.



22 H. CHRISTIANSON AND J. TOTH

Plugging in, we have∫
Ω
([−h2∆− 1, χ(x, y)∂x]ϕh)ϕhdV

= −
∫
∂Ω

(h∂νχh∂xϕh)ϕhdS

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂2νϕh −

α′
1

κ21
hχxh∂τϕh +O(h)h∂τϕh)ϕhdS

−
∫
∂Ω∩{y≤0}

(
α′
2

κ2
χh2∂2νϕh +

α′
2

κ22
hχxh∂τϕh +O(h)h∂τϕh)ϕhdS

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂2νϕh −

α′
1

κ21
hχxh∂τϕh)ϕhdS

−
∫
∂Ω∩{y≤0}

(
α′
2

κ2
χh2∂2νϕh +

α′
2

κ22
hχxh∂τϕh)ϕhdS +O(1), (43)

where we have again used integration by parts along the boundary and Sobolev em-
bedding on the implicit O(h) boundary terms supported away from the corner, just as
we did in (15)-(16).

For the computations involving the vector fields ρj∂y, we have by Green’s formula

∫
Ωj

([−h2∆− 1, ρj∂y]ϕh)ϕhdV

= −
∫
∂Ωj

(h∂νρjh∂yϕh)ϕhdS

= −
∫
{y=α1(x)}

(h∂νρjh∂yϕh)ϕhdS −
∫
{y=0}

(h∂νρjh∂yϕh)ϕhdS,

since ψ̃(x/ϵ) has compact support in {x ≤ 2ϵ ≪ r}. Using the same computations
which led to (43), on {y = α1}, we have

h∂νρ1h∂yϕh =
1

κ1
ρ1h

2∂2νϕh +
α′
1

κ21
hρ1,yh∂τϕh +O(h)h∂τϕh.

On {y = 0}, from Ω1, we have ∂ν = −∂y, so that

h∂νρ1h∂yϕh = −h∂yρ1h∂yϕh
= −hρ1,yh∂yϕh − ρ1h

2∂2yϕh

= −hρ1,yh∂yϕh
= −(h

1
2 /2)ψ̃(x/ϵ)h∂yϕh,
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since ρ1(x, 0) = 0. In the last line we have used (34). Putting this together, we have

∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV

= −
∫
∂Ω1

(h∂νρ1h∂yϕh)ϕhdS

= −
∫
{y=α1}

(h∂νρ1h∂yϕh)ϕhdS −
∫
{y=0}

(h∂νρ1h∂yϕh)ϕhdS

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2νϕh +
α′
1

κ21
hρ1,yh∂τϕh +O(h)h∂τϕh)ϕhdS

−
∫
{y=0}

(−hρ1,yh∂yϕh)ϕhdS

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2νϕh +
α′
1

κ21
hρ1,yh∂τϕh)ϕhdS

−
∫
{y=0}

(−(h
1
2 /2)ψ̃(x/ϵ)h∂yϕh)ϕhdS +O(1). (44)

Here we have once again used the Sobolev embedding on the implicit O(h) boundary
terms just as we did in (15)-(16).

In a similar fashion, we compute for Ω2:

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= −
∫
∂Ω2

(h∂νρ2h∂yϕh)ϕhdS

= −
∫
{y=α2}

(− 1

κ2
ρ2h

2∂2νϕh −
α′
2

κ21
hρ2,yh∂τϕh)ϕhdS

−
∫
{y=0}

((h
1
2 /2)ψ̃(x/ϵ)h∂yϕh)ϕhdS +O(1). (45)

Here in the last line we have used that, from Ω2, ∂ν = ∂y along {y = 0}.
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Summing (44) and (45), we have∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2νϕh +
α′
1

κ21
hρ1,yh∂τϕh)ϕhdS

+

∫
{y=0}

((h
1
2 /2)ψ̃(x/ϵ)h∂yϕh)ϕhdS

+

∫
{y=α2}

(
1

κ2
ρ2h

2∂2νϕh +
α′
2

κ22
hρ2,yh∂τϕh)ϕhdS

−
∫
{y=0}

((h
1
2 /2)ψ̃(x/ϵ)h∂yϕh)ϕhdS +O(1)

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2νϕh +
α′
1

κ21
hρ1,yh∂τϕh)ϕhdS

+

∫
{y=α2}

(
1

κ2
ρ2h

2∂2νϕh +
α′
2

κ22
hρ2,yh∂τϕh)ϕhdS +O(1). (46)

From (32), we know that

ρj(x, αj(x)) = α′
jχ(x, αj(x))

and

ρj,y(x, αj(x)) = χx(x, αj(x)) +Aj +O(1),

so that (46) becomes∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= −
∫
{y=α1}

(
1

κ1
α′
1χh

2∂2νϕh +
α′
1

κ21
h(χx +A1)h∂τϕh)ϕhdS

+

∫
{y=α2}

(
1

κ2
α′
2χh

2∂2νϕh +
α′
2

κ22
h(χx +A2)h∂τϕh)ϕhdS +O(1) (47)

= −
∫
{y=α1}

(
1

κ1
α′
1χh

2∂2νϕh +
α′
1

κ21
hχxh∂τϕh)ϕhdS

+

∫
{y=α2}

(
1

κ2
α′
2χh

2∂2νϕh +
α′
2

κ22
hχxh∂τϕh)ϕhdS +O(1), (48)

where we have used an argument similar to (36) to control the boundary terms with
the Ajs.
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Summing (43) and (48), we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂νϕh −

α′
1

κ21
hχxh∂τϕh)ϕhdS

−
∫
∂Ω∩{y≤0}

(
α′
2

κ2
χh2∂νϕh +

α′
2

κ22
hχxh∂τϕh)ϕhdS

−
∫
{y=α1}

(
1

κ1
α′
1χh

2∂2νϕh +
α′
1

κ21
hχxh∂τϕh)ϕhdS

+

∫
{y=α2}

(
1

κ2
α′
2χh

2∂2νϕh +
α′
2

κ22
hχxh∂τϕh)ϕhdS +O(1). (49)

All of the displayed boundary terms in (49) cancel, so that∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]ϕh)ϕhdV

= O(1). (50)

Finally, equating (42) and (49), we have shown

2

∫
Ω
χx(|h∂xϕh|2dV + 2

∫
Ω1

ρ1,y|h∂yϕh|2dV + 2

∫
Ω2

ρ2,y|h∂yϕh|2dV = O(1).

Using the same estimates as in (13), we have that

χx ≥ h−1/2γ(x/h1/2)γ(y/h1/2)γ(y/h1/2)−O(1)

and on each of Ωj ,

ρj,y ≥ c0h
−1/2γ(x/h1/2)γ(y/h1/2),

for some c0 > 0 independent of h, so arguing as in (25), we finally get∫
B((0,0),h

1
2 )
h−

1
2 |ϕh|2dV = O(1).

Step 2: δ = 2/3.
We are now ready to bootstrap the estimate for δ = 2/3. The argument proceeds

exactly as in the δ = 1/2 case, but now some of the error terms are no longer so easy
to absorb. The bootstrap from δ = 1/2 to δ = 2/3 forms the basis for our induction
argument. The idea is to use a Sobolev-type estimate and the estimate in a ball of
radius ∼ h1/2 to control one of the largest boundary terms which show up when our
cutoff function is on scale h2/3. The other largest boundary terms will cancel similar
to the h1/2 case.

We begin with the case where p0 is not a corner, starting with defining the cutoff χ
as in (12). For ϵ > 0 small but independent of h, let
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χ(x, y) = χ̃(x/h2/3)ψ̃(x/ϵ)ψ̃(y/ϵ). (51)

We similarly define

ρ(x, y) := α′(x)χ̃(β(y)/h2/3)ψ̃(x/ϵ)ψ̃(y/ϵ).

Observe the only difference in (51) versus the cutoff in (12) is the h−2/3 appearing

instead of h−1/2. This is good, since we will once again need some boundary terms to
cancel. The argument is identical to the argument in the δ = 1/2 case except for one

piece: χxx is no longer O(h−1) but instead is O(h−4/3). We will have to work harder
to control this.

Beginning with the commutator, since χy and χyy are both bounded, we have∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
Ω
((−2χxh

2∂2x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x)ϕh)ϕhdV

= −2

∫
Ω
(χxh

2∂2xϕh)ϕhdV −
∫
Ω
hχxx(h∂xϕh)ϕhdV +O(1).

Let

I =

∫
Ω
hχxx(h∂xϕh)ϕhdV.

Even though χxx = O(h−4/3), we will nevertheless show I is bounded. Write

I =

∫ r

−r

∫ r

β(y)
hχxx(h∂xϕh)ϕhdxdy

and integrate by parts:

I = −
∫ r

−r

∫ r

β(y)
(ϕh)h∂x(hχxxϕh)dxdy +

∫ r

−r
h2χxx|ϕh|2|rβ(y)dy

= −I − h2
∫ r

−r

∫ r

β(y)
χxxx|ϕh|2dxdy +

∫ r

−r
h2χxx|ϕh|2|rβ(y)dy. (52)

Let

I1 = h2
∫ r

−r

∫ r

β(y)
χxxx|ϕh|2dxdy.

We have χxxx = h−2, so I1 = O(1). We pause briefly here to observe that the function
χxxx still has large support in the y direction, so we cannot use the δ = 1/2 non-
concentration estimate here. We use that for the next term: let

I2 =

∫ r

−r
h2χxx|ϕh|2|rβ(y)dy.

As before, the support properties of χ and its derivatives tells us

I2 = −
∫ r

−r
h2χxx|ϕh|2(β(y), y)dy.
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Remark 9. Away from corners, the bound I2 = O(1) follows from the universal
eigenfunction boundary restriction upper bound in [Tat98]. Indeed, since h2χxx =

O(h2/3)χ̃xx,

I2 = O(h2/3)

∫
∂Ω
χ̃xx|ϕh|2dS = O(1)

where the last estimate follows from the Tataru bound
∫
∂Ω χ̃xx|ϕh|2dV = O(h−2/3)

since χ̃xx is supported away from corners. However, since we will need our estimates
to hold near corners as well, we give a more direct argument here to bound I2.

Note that I2 is a boundary integral with support in three different regions in the
x direction. We have χxx = O(h−4/3) for −3h2/3 ≤ x ≤ 3h2/3, and χxx = O(1)

for |x| ≥ 3h2/3. In the latter region, the boundary integral then has h2, so Sobolev

embedding gives O(h). It is on the region −3h2/3 ≤ x ≤ 3h2/3 where we may encounter

a problem. Let [a(h), b(h)] be the image in y of [−3h2/3, 3h2/3]. Using Lemma 3 with

η ∼ h1/2, we have

I2 = h2/3
∫
[a(h),b(h)]

(h4/3χxx)|ϕh|2dS +O(1)

= O(h−1/3)

∫
B(p0,Mh2/3)

|ϕh|2dV +O(1)

= O(h−1/3)

∫
B(p0,h

1
2 )

|ϕh|2dV +O(1)

= O(h1/6) +O(1). (53)

Here M > 0 is a constant large enough so that

{(β(y), y) : a(h) ≤ y ≤ b(h)} ⊂ B(p0,Mh2/3).

Combining this with the estimate on I1 and plugging into (52), we have

2I = O(1).

Now the computations (17)-(25) are identical, including the boundary cancellations,
leading to ∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

+

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

≥ c0

∫
Ω
h−2/3γ(x/h2/3)γ(y/h2/3)|ϕh|2dV −O(1) (54)

for some c0 > 0 independent of h.
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On the other hand, expanding the commutator, using the Neumann boundary con-
ditions, and applying Sobolev embedding as in (28) yields the exact same identity:∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2νϕh

)
ϕhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τϕh

)
ϕhdS +O(1).

And again, similar computations give∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

= −
∫
∂Ω

(
ρ
1

κ
h2∂2νϕh

)
ϕhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τϕh

)
ϕhdS +O(1).

Again using the same cancellation on the boundary terms, we finally arrive at∫
Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV +

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV = O(1).

Comparing to (54), we have∫
Ω
h−2/3γ(x/h2/3)γ(y/h2/3)|ϕh|2dV = O(1),

which completes the proof in the case p0 is not a corner.
To prove the result for δ = 2/3 in the corner case, we again have to be careful with

the additional Ajs that show up. Copying the computations in the δ = 1/2 case, we

are led to consider the integrals similar to (35), but on scale h2/3:∫
Ω1

([−h2∆− 1, ρ1∂y]ϕh)ϕhdV

= 2

∫
Ω1

ρ1,y|h∂yϕh|2dydx

− 2

∫ r

x=0
(h(χx +A1)(h∂yϕh)ϕh)(x, α1(x))dx

+ 2

∫ r

x=0
(h−2/3/2)ψ̃(x/ϵ)(h(h∂yϕh)ϕh)(x, 0)dx+O(1). (55)

In order to estimate the term with A1 in (55) we switch to tangent coordinates τ
just like for (35). But now we have

∂τ Ã1 = (∂τ χ̃(β1(y)/h
2/3))(x/α1(x))α

′′
1(xy/αj(x))ψ̃(x/ϵ)ψ̃(y/ϵ)

+ χ̃(β1(y)/h
2/3)∂τ ((x/α1(x))α

′′
1(xy/α1(x))ψ̃(x/ϵ)ψ̃(y/ϵ))

=: Ã11 + Ã12.
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This means that Ã11 = O(h−2/3) with support on |τ | ≲ h2/3 and Ã12 = O(1).

Replacing Ã1 with (κ1/α
′
1)Ã1 to account for the coordinate change y 7→ τ and

continuing in tangent coordinates:∫ r

x=0
(hA1(h∂yϕh)ϕh)(x, α1(x))dx =

∫ r

τ=0
hÃ1(τ)(h∂τϕh)ϕhdτ

=
h2

2

∫ r

τ=0
Ã1∂τ |ϕh|2dτ

= −h
2

2

∫ r

τ=0
(∂τ Ã1)|ϕh|2dτ

= −h
2

2

∫ r

τ=0
(Ã11 + Ã12)|ϕh|2dτ

= −h
2

2

∫ r

τ=0
Ã11|ϕh|2dτ +O(1).

Now an application of Lemma 3 with η ≲ h2/3 yields

h2

2

∫ r

τ=0
A11|ϕh|2dτ

= O(h4/3)

∫ r

τ=0
(h2/3A11)|ϕh|2dτ

= O(h1/3)

∫
B(p0,Mh2/3)

|ϕh|2dV

≤ Ch1/3
∫
B(p0,h1/2)

|ϕh|2dV

= O(h5/6).

The rest of the proof of the δ = 2/3 case for corners is exactly the same as for
δ = 1/2.

Step 3 (induction): 2/3 < δ < 1.
Our goal now is to prove that for any integer k > 0, the theorem is true for δ =

1 − 1/3k. The case k = 1 has already been shown, so we are ready for the induction
step.

We will need better control over some of the boundary terms than we have had
previously. We will employ more or less the same cutoffs, so the same important
cancellation will occur, but it is the “lower order” terms we need to estimate. The
issue is that lower order for the induction means we use the estimates for δ = 1− 1/3k
to prove the estimates for δ = 1−1/3(k+1). Since in these cases δ > 2/3, this is more
complicated.

In order to fix the ideas and notations, let χ̃ and ψ̃ be as in Subsection 2.1. We
work initially away from a corner, but the proof in the corner case follows line by line
as the proof in the δ = 1/2 case, with one notable exception which we shall point out
as we proceed.

Fix p0 ∈ ∂Ω away from a corner and rotate and translate as above so that p0 = (0, 0),
and locally ∂Ω is a graph y = α(x), α′(0) ̸= 0. We also write β = α−1 so that the
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boundary can also be written x = β(y). Let r > 0 be as in the beginning of the proof,
a number independent of h such that B(p0, r) does not meet any corners. Again, this
is just to avoid messy numerology when writing down our integral formulae.

Fix an integer k > 0 and let

ηk = 1− 1

3k
be the corresponding index. Let

χ = χ̃(x/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk). (56)

We observe that this cutoff has derivative ∼ h−ηk+1 for x in an hηk+1 neighbourhood,
but is supported in a neighbourhood of size hηk . In particular, we record the following
facts:

• χ(x, y) = x/2hηk+1 for −hηk+1 ≤ x ≤ hηk+1 and −hηk ≤ y ≤ hηk .
• χ is supported in [−2hηk , 2hηk ]2.
• The support of χx has three connected components in x:

χx = 1/2hηk+1 , |x| ≤ hηk+1 ,

and

χx = O(h−ηk+1), |x| ≤ 3hηk+1 ;

χx = 0, 3hηk+1 ≤ |x| ≤ hηk ;

and

χx = O(h−ηk), hηk ≤ |x| ≤ 2hηk .

The purpose for replacing ψ̃ with ψ̃2 will become apparent shortly.
Claim: For h > 0 sufficiently small, we have the estimate∫

Ω
χ(|h∂xϕh|2 + |h∂yϕh|2)dV = O(hηk). (57)

To prove the claim, we will integrate by parts. We first get rid of the χ̃ part:

|χ| ≤ ψ̃2(x/hηk)ψ̃2(y/hηk).

In order to ease notation, let ψk(x) = ψ̃(x/hηk) and similarly for ψk(y). Then we
integrate by parts. Letting I denote the integral (after removing the χ̃):

I =

∫
Ω
ψ2
k(x)ψ

2
k(y)(|h∂xϕh|2 + |h∂yϕh|2)dV

=

∫
Ω
ψ2
k(x)ψ

2
k(y)(−h2∆ϕh)ϕhdV

−
∫
Ω
2h1−ηk ψ̃′(x/hηk)ψk(x)ψ

2
k(y)(h∂xϕh)ϕhdV

−
∫
Ω
2h1−ηkψ2

k(x/h)ψ̃
′(y/hηk)ψk(y)(h∂yϕh)ϕhdV

+

∫
∂Ω
hψ2

k(x)ψ
2
k(y)(h∂νϕh)ϕhdS.
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The last term is zero due to the Neumann boundary conditions. For the remaining
terms, observe that 1 − ηk > 0 so we can estimate the second and third terms using
Cauchy’s inequality:∣∣∣∣∣

∫
Ω
2h1−ηk ψ̃′(x/hηk)ψk(x)ψ

2
k(y)(h∂xϕh)ϕhdV

+

∫
Ω
2h1−ηkψ2

k(x)ψ̃
′(y/hηk)ψk(y)(h∂yϕh)ϕhdV

∣∣∣∣∣
≤ Ch1−ηk

∫
[−2hηk ,2hηk ]2

ψ2
k(y)(ψ

2
k(x)|h∂xϕh|2 + (ψ′

k(x))
2|ϕh|2)dV

+ Ch1−ηk

∫
[−2hηk ,2hηk ]2

ψ2
k(x)(ψ

2
k(y)|h∂yϕh|2 + (ψ′

k(y))
2|ϕh|2)dV.

Recall we are assuming the theorem is true for k, so we have∫
[−2hηk ,2hηk ]2

|ϕh|2dV = O(hηk).

Collecting terms, we have

I ≤ Ch1−ηkI +O(hηk).

Rearranging proves the claim since ηk < 1.
We now use this Claim together with Lemma 3 to control boundary terms. We

follow the proof in the δ = 2/3 case. We compute the commutator, being very careful
for “lower order terms”. Recalling the definition (56) of χ:∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV

=

∫
Ω
((−2χxh

2∂2x − hχxxh∂x − 2χyh∂yh∂x − hχyyh∂x)ϕh)ϕhdV. (58)

Let us examine each term separately. We have∫
Ω
(−2χxh

2∂2xϕh)ϕhdV

=

∫ r

−r

∫ r

β(y)
(−2χxh

2∂2xϕh)ϕhdxdy

=

∫ r

−r

∫ r

β(y)
(2χx|h∂xϕh|2dxdy

+

∫ r

−r

∫ r

β(y)
(2hχxxh∂xϕh)ϕhdxdy

−
∫ r

−r
2hχx(h∂xϕh)ϕh|rβ(y)dy. (59)
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The term in (59) with χxx also shows up in (58). We know that χxx = O(h−2ηk+1)
and is supported on a set of radius ∼ hηk , so our Claim (57) gives∫

Ω
hχxx(h∂xϕh)ϕhdV = O(hh−2ηk+1hηk)

= O(1),

since

1− 2ηk+1 + ηk = 1− 2

(
1− 1

3(k + 1)

)
+ 1− 1

3k
=

k − 1

3k(k + 1)
≥ 0.

For the two remaining terms in (59), we need to use the support properties of χx.
We have

χx = h−ηk+1χ̃′(x/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk)

+ 2h−ηk χ̃(x/hηk+1)ψ̃′(x/hηk)ψ̃(x/hηk)ψ̃2(y/hηk).

Recalling our function γ(s) = χ̃′(s), we have

χx ≥ h−ηk+1γ(x/hηk+1)−O(h−ηk),

and let us stress again that the O(h−ηk) error term is supported on scale hηk , so our
Claim (57) applies. Hence we have∫

Ω
2χx|h∂xϕh|2dV ≥ h−ηk+1

∫
Ω
γ(x/hηk+1)γ(y/hηk+1)|h∂xϕh|2dV −O(1).

We now examine the boundary term in (59). This is again where we must be mindful
of any differences between the case with or without corners. As in the previous steps
in the proof, we will also be using a commutant with the vector field ρ∂y, where

ρ = α′(x)χ̃(β(y)/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk). (60)

The same cancellations of boundary terms will happen on the set where ρy = χx, which
is for −3hηk+1 ≤ x ≤ 3hηk+1 . For |x| ≥ 3hηk+1 , these functions do not necessarily agree,
but in this region both χx and ρy are O(h−ηk) rather than O(h−ηk+1). Further, they
are supported away from x = 0 so that we may further integrate by parts on the
boundary. That is,∫ r

−r
(2hχxh∂xϕh)ϕh|rβ(y)dy

= −
∫ r

−r
2hh−ηk+1χ̃′(x/hηk+1)ψ̃2(β(y)/hηk)ψ̃2(y/hηk)h∂xϕh)ϕh(β(y), y)dy

−
∫ r

−r
4hh−ηk χ̃(x/hηk+1)ψ̃′(β(y)/hηk)ψ̃(β(y)/hηk)ψ̃2(y/hηk)h∂xϕh)ϕh(β(y), y)dy.

The cutoffs in the second term are supported away from x = 0, where χ̃ = ±1. Let τ
denote the tangent variable so that, as above,

∂yϕh|∂Ω =
α′

κ
∂τϕh|∂Ω.

Let
ζ̃(y) = χ̃(β(y)/hηk+1)ψ̃′(β(y)/hηk)ψ̃2(y/hηk),
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and let ζ(τ) denote ζ̃ in tangent coordinates, so that ∂mτ ζ = O(h−mηk). Then∫ r

−r
2hh−ηk χ̃(x/hηk+1)ψ̃′(β(y)/hηk)ψ̃(β(y)/hηk)ψ̃2(y/hηk)h∂xϕh)ϕh(β(y), y)dy

=

∫
∂Ω
h2−ηkζ(τ)

α′

κ
∂τ (|ϕh|2)dτ

= −
∫
∂Ω
h2−ηk∂τ (ζ(τ)

α′

κ
)|ϕh|2dτ

= O(h2−2ηkhηk−1)

= O(1),

where we have used our Claim (57) together with Lemma 3 and that ηk < 1 for every
k. Collecting terms, we have∫ r

−r
(2hχxh∂xϕh)ϕh|rβ(y)dy

= −
∫ r

−r
2hh−ηk+1χ̃′(β(y)/hηk+1)ψ̃2(β(y)/hηk)ψ̃2(y/hηk)h∂xϕh)ϕh(β(y), y)dy +O(1).

We continue with the other two terms in (58). We have χy = O(h−ηk) and hχyy =
O(h1−2ηk) = O(h−ηk), and we are integrating over a region of radius ∼ hηk , so using
our Claim (57) together with Lemma 3 yet again,∫

Ω
((−2χyh∂yh∂x − hχyyh∂x)ϕh)ϕhdV = O(1).

We now use the vector field ρ∂y as in (60). All of the computations are similar,
once again singling out the boundary terms which are supported near x = 0 but where
χx = ρy and summing as in the δ = 2/3 case, we get∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV +

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV

= 2

∫
Ω
χx|h∂xϕh|2dV + 2

∫
Ω
ρy|h∂yϕh|2dV

−
∫ r

−r
2hh−ηk+1χ̃′(β(y)/hηk+1)ψ̃(β(y)/hηk)ψ̃(y/hηk)h∂xϕh)ϕh(β(y), y)dy

+

∫ r

−r
2hh−ηk+1χ̃′(x/hηk+1)ψ̃(x/hηk)ψ̃(α(x)/hηk)h∂yϕh)ϕh(x, α(x))dx+O(1)

≥ c0h
−ηk+1

∫
Ω
γ(x/hηk+1)γ(y/hηk+1)|ϕh|2dV −O(1)

≥ c0
4
h−ηk+1

∫
Ω∩B(p0,h

ηk+1 )
|ϕh|2dV −O(1)

for c0 > 0 independet of h.
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Finally, we unpack the commutator as in the δ = 1/2 case and use the claims and
observations above to conclude that∫

Ω
([−h2∆− 1, χ∂x]ϕh)ϕhdV +

∫
Ω
([−h2∆− 1, ρ∂y]ϕh)ϕhdV = O(1).

This completes the proof in the case p0 is not a corner.
In the case p0 is a corner, we use the functions

ρj = α′
j(xy/αj(x))χ̃(βj(y)/h

ηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk).

We recall the following facts about the ρjs: First, along y = αj , j = 1, 2, we have

ρj(x, αj(x)) = α′
j(x)χ̃(x/h

ηk+1)ψ̃2(x/hηk)ψ̃2(αj(x)/h
ηk) = α′

jχ(x, αj(x)). (61)

Along y = 0, ρj = 0, since χ̃ is an odd function and βj(0) = 0 for j = 1, 2. Along
y = αj ,

∂yρj(x, αj(x)) = h−ηk+1α′
j(x)β

′
j(αj(x))χ̃

′(x/hηk+1)ψ̃2(x/hηk)ψ̃2(αj(x)/h
ηk) +Aj +O(h−ηk)

= h−ηk+1χ̃′(x/hηk+1)ψ̃2(x/hηk)ψ̃2(αj(x)/h
ηk) +Aj +O(h−ηk)

= ∂xχ(x, αj(x)) +Aj +O(h−ηk).

Here Aj is the term we get when the derivative lands on the α′
j(xy/αj(x)):

Aj = (x/αj(x))α
′′
j (xy/αj(x))χ̃(βj(y)/h

ηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk).

Remark 10. We point out again that the implicit O(h−ηk) error term is due to

differentiating the ψ̃2(y/hηk) which is then supported away from (0, 0) on scale ∼ hηk ,
hence does not see χ̃(βj(y)/h

ηk+1). We single out the behaviour of Aj because it is
still singular due to the χ̃(βj/h

ηk+1). Indeed, we have

∂pyAj = O(h−pηk+1),

and for k ≥ 1, ∂kyAj is supported where |y| ≲ hηk+1 . We know χ̃(βj(y)/h
ηk+1) vanishes

at x = y = 0 so that Aj does as well.

Finally, along y = 0, we have χ̃′(0) = 1/2 and ψ̃′(0) = 0, so that

∂yρj(x, 0) = h−ηk+1χ̃′(0)ψ̃2(x/hηk)ψ̃2(0) +O(h−ηk) (62)

= (h−ηk+1/2)ψ̃(x/ϵ) +O(h−ηk). (63)

The only new element in the proof at this point is in estimating the boundary terms
involving the Aj , so let us very quickly see what happens. Continuing, using Remark
10: ∫ r

τ=0
hÃj(τ)(h∂τϕh)ϕ̄jdτ =

h2

2

∫ r

0
Ãj∂τ |ϕh|2dτ

= −h
2

2

∫ r

0
(∂τ Ãj)|ϕh|2dτ

= O(h1−ηk+1+ηk)

= O(1) (64)

from Lemma 3 with hηk .
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