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Abstract. Let (Ω, g) be a piecewise-smooth, bounded convex domain in R2 and
consider L2-normalized Neumann eigenfunctions φλ with eigenvalue λ2 and uλ :=
φλ|∂Ω the associated Dirichlet data (ie. boundary restriction of φλ). Our first main
result (Theorem 1) is a small-scale non-concentration estimate: We prove that for

any x0 ∈ Ω, (including boundary corner points) and any δ ∈ [0, 1),

‖φh‖B(x0,λ−δ)∩Ω = O(λ−δ/2).

Our subsequent results involve applications of the nonconcentration estimate to up-
per bounds for L2 restrictions of boundary eigenfunctions that are valid up to bound-
ary corners. In particular, in Theorem 2 we prove that for any flat boundary edge
Γ (possibly including corner points), the boundary restrictions uh := φh|∂Ω satisfy
the bounds

‖uλ‖L2(Γ) = Oε(λ
1/4+ε),

for any ε > 0. The exponent 1/4 is sharp and the result improves on the O(λ1/3)
universal L2-restriction bound for Neumann eigenfunctions due to Tataru [Ta]. The

O(λ1/4) -bound is also an extension to the boundary (including corner points) of
well-known interior L2 restriction bounds of Burq-Gerard-Tzvetkov [BGT] along
totally-geodesic hypersurfaces.

1. introduction

1.1. Non-concentration estimates. Let Ω ⊂ R2 be a bounded, convex planar do-
main with boundary ∂Ω. We say that Ω is piecewise smooth if the boundary ∂Ω =
∪Nj=1Γj such that there exist defining functions fj ∈ C∞(R2;R) with

Γj ⊂ {x ∈ R2; fj(x) = 0, dfj(x) 6= 0}.

We refer to the Γj ’s as the boundary edges. We say that a piecewise-smooth Ω is a
domain with corners if the Γj ’s are diffeomorphic to closed intervals with Γj ∩ Γj+1 =
cj ∈ R2; j = 1, ..., , N, such that at cj = Γj ∩ Γj+1,

rank (dfj(cj), dfj+1(cj)) = 2.

We refer to C := {cj}Nj=1 as the set of corner points and the rank condition on the
defining functions at the cj ’s ensures that the boundary edges Γj ; j = 1, ..., N intersect
at non-zero angles. We denote the angle at a corner cj by αj .

1



2 H. CHRISTIANSON AND J. TOTH

A fundamental issue regarding eigenfunctions involves their concentration properties
(or lack thereof) on small balls with radius that depends on the semiclassical parameter
h as h→ 0+.

Let (M, g) be a compact Riemannian manifold without boundary and φh a Laplace
eigenfunction with eigenvalue h−2. Then, as pointed out in [So], using the explicit

asymptotic formula for the half-wave operator eit
√
−∆ : C∞(M) → C∞(M) it is not

hard to prove that there exists CM > 0 such that

‖φh‖2L2(B(r)) = O(r)‖φh‖2L2(M), ∀r ≥ CMh (1)

We refer to estimates of the form (1) as non-concentration bounds. The example of
highest weight spherical harmonics on the round sphere (see Remark 3 below) shows
that (1) is, in general, sharp. However, in certain cases, one expects improvements. For
instance, in the case of surfaces with non-positive curvature, one can get logarithmic
improvements [So] (see also [Han, HR]).

Since the proof of (1) uses the wave parametrix in a crucial way, the extension to
manifolds with boundary is non-obvious since the behaviour of the wave operators near
∂Ω is much more complicated than in the boundaryless case. The first main result of
this paper (Theorem 1) is an extension of the bounds in (1) to Neumann eigenfunctions
of a bounded piecewise-smooth, convex planar domain. Our basic method of proof
here is entirely stationary and uses a Rellich commutator argument rather than wave
methods. This stationary approach allows us to deal with both boundaries and corners
as well. We note that our result below holds right up to the boundary, including corner
points.

Theorem 1. Let Ω ⊂ R2 be a piecewise C∞ bounded, convex domain and consider
the semiclassical Neumann eigenfunction problem:

−h2∆φh(x) = φh(x), x ∈ Ω,

∂νφh|∂Ω = 0,

‖φh‖L2(Ω) = 1,

where ∂ν is the outward pointing normal derivative. Let p0 ∈ Ω be a point in Ω or on
the boundary. Then for any 0 ≤ δ < 1,

‖φh‖2L2(B(p0,hδ))
= O(hδ). (2)

Remark 1. The theorem is also true for Dirichlet eigenfunctions, but the proof in
that case is much easier. We will point out the small modifications necessary to the
proof of Theorem 1 in the proof.

Remark 2. As the proof will indicate, the bound for eigenfunction L2 mass in a ball
of radius hδ, 0 ≤ δ ≤ 1/2, is relatively straightforward. The cases where 0 ≤ δ < 1/2
follow immediately from the argument proving the δ = 1/2 case. To improve to
1/2 < δ < 1, we use the estimate for δ = 1/2 to bootstrap to δ = 2/3. Then an
induction step proves that for any integer k > 0, the result is true for δ = 1− 1/3k.
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Remark 3. The estimate in Theorem 1 is sharp. To see this, let γ ⊂ Ω be a geodesic
segment with γ = {(x′, xn = 0) ∈ Ω; |x′| < δ} and U = {(x′, xn); |xn| < δ} be a tubular
neighbourhood, where (x′, xn) : U → Rn are Fermi coordinates. An L2-normalized
Gaussian beam localized on γ is of the form

uh(x) = (2πh)−1/4e−x
2
n/h eix

′/h ( a(x′, xn; ) +O(h) ); a ∈ C∞(U), |a(x)| > 0, x ∈ U.

It follows that

‖uh‖2B(0,h1/2)
∼
∫
|xn|≤h1/2

∫
|x′|<h1/2

|uh(x)|2 dx ∼ h1/2.

Consider the case where Ω = {(x, y); x
2

a2 + y2

b2
= 1, y ≥ 0} where a > b > 0 is

the half-ellipse and let φh be an L2-normalized Neumann eigenfunction. It is well-
known (see [TZ] section 2.2) that there exists a subsequence of eigenfunctions that are
Gaussian beams along the major axis {(x, 0);−a ≤ x ≤ a}. Consequently, the estimate
in Theorem 1 is sharp in general. In the special case where the uh satisfy polynomial
small-scale quantum ergodicity (SSQE) on a scales h1/2, since the volume of a ball of

radius h1/2 is h, one putatively expects a bound of O(h) on the RHS in Theorem 1.
Unfortunately, to our knowledge, there are no rigorous results on polynomial SSQE
known at present, although logarithmic SSQE was proved by X. Han [Han].

1.2. Restriction bounds along geodesic boundary components. Our second
theorem deals with bounds for eigenfunction restrictions. This problem has been the
focus of many papers over the past decade and has deep and interesting connection to
the study of the asymptotics of eigenfunction nodal set and, in particular, intersection
bounds [CTZ, DZ, ET, G, GRS, HZ, JJ, JJZ, TZ, TZ13, TZ12]
Specifically, in the case of L2-normalized Neumann eigenfunctions with ‖φh‖L2(Ω) = 1,
the h-Sobolev estimates give

‖uh‖L2(∂Ω) = O(h−1/2‖φh‖L2(Ω)) = O(h−1/2),

and so the bounds in Theorem 2 are polynomial improvements over the (automatic)
h-Sobolev estimates.

It was proved by Tataru [Ta] that for bounded domains with smooth boundary, the
elementary Sobolev bounds can be improved and the Dirichlet traces uh of Neumann
eigenfunctions satisfy

‖uh‖L2(∂Ω) = O(h−1/3). (3)

For general smooth boundaries, (3) is sharp and is saturated by whispering gallery
modes on the disc [HT].

Remark 4. We emphasize that the O(h−1/3) boundary estimate in (3) should not

be confused with the restriction bound ‖uh‖L2(H) = O(h−1/6) (see [BGT]) in the case
where H is an interior curve segment with positive curvature. Roughly speaking,
the latter is consistent with the decay of semiclassically rescaled Airy functions in
classically allowable regions, whereas the former corresponds to Airy decay in the
classically forbidden region. This is an interesting contrast that we hope to address in
detail elsewhere.
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As an application of the non-concentration estimate (see Theorem 1), we consider the
problem of deriving sharp L2 restriction bounds for Neumann eigenfunctions along
geodesic boundary segments up to corners. When Γ ⊂ Ω̊ is a strictly interior geo-
desic segment, the bound ‖uh‖L2(Γ) = O(h−1/4) follow from the general Lp restriction
bounds of Burq-Gerard-Tzvetkov [BGT]. The main novel feature of Theorem 2 is the

extension of the interior O(h−1/4) geodesic restriction bound to the boundary (includ-
ing corners) with a loss of h−ε for any ε > 0, thereby improving on the universal Tataru

O(h−1/3)-bound along geodesic boundary edges.
To state our second main result, we will need the following

Definition 1. . Let Ω be a piecewise C∞ planar domain with corners and Γj ⊂ ∂Ω
be a flat edge. We say that Ω is admissible if for any adjacent interior angle αj to a
corner cj ∈ Γj the following conditions are satisfied:

(i)
{
Lj(t) := cj + e2i(π−αj)t, t ∈ R

}
∩ C = cj , when αj ∈ (π/2, π),

(ii)
{
Lj(t) := cj + e2iαj t, t ∈ R

}
∩ C = cj , when αj ∈ (0, π/2].

Roughly speaking, admissibility amounts to the condition that glancing rays to a
flat boundary edge Γj starting from a corner point cj ∈ Γj reflect off an adjacent edge
and do not hit any other corner point. The condition in terms of angles is stated
slightly differently depending on whether the corner angle at cj is obtuse as in (i), or
acute as in (ii) (see Figures 4 and 5 where the lines Lj are pictured).

Theorem 2. Let Ω ⊂ R2 be a convex, bounded domain with corners and boundary
∂Ω that is admissible in the sense of Definition 1. Let Γj be a totally geodesic (i.e.
flat) boundary segment and uh := φh|∂Ω be the Dirichlet traces of the Neumann eigen-
functions, φh. Then, for any ε > 0 there exists Cε > 0 and h0(ε) > 0 such that for
h ∈ (0, h0(ε)],

‖uh‖L2(Γj) ≤ Cεh
−1/4−ε.

Let N(h) : C0(∂Ω)→ C0(∂Ω) be the double layer potential corresponding to the free
Green’s function G(q, q′, h) of the Helmholtz equation (−h2∆q−1)G(q, q′, h) = δ(q−q′)
in R2 (see section 3). Setting aside technicalities, the rough idea of the proof of
Theorem 2 involves combining a suitably microlocalized version of the boundary jumps
equations uh = N(h)uh with Sobolev restriction applied to the non-concentration
results in Theorem 1 to bound the L2-mass of eigenfunction restrictions near corners.
Specifically, in sections 3 and 4 we show that when Γj is a flat boundary edge, there

exist certain boundary operators NDj (h), NGj (h) : C0(∂Ω) → C0(Γj) so that with

ujh := 1Γjuh,

ujh = NGj (h)uh +NDj (h)uh +O(1)L2 . (4)

In (4), NGj (h) is an h-Fourier integral operator (h-FIO) with canonical relation

graph β, where β : B̊∗∂Ω→ B̊∗∂Ω is the billiard map. We refer to it as the geometric
term in (4). On the other hand, the operator NDj (h) corresponds to diffraction at the
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corners bounding the edge Γj and so, we refer to the latter as the diffractive term.
Not suprisingly, the main contribution indeed comes from the geometric term and by
successive reflections in the sides adjacent to a flat side Γj (see also Figures 4 and 5),
in section 4 we show that under the admissibility assumption in Definition 1, for any
ε > 0,

‖Nβ
j (h)uh‖L2(Γj) = Oε(h

−1/4−ε).

A more straightforward argument in subsection 4.2.1 also shows that the diffractive
term satisfies

‖NDj (h)uh‖L2 = Oε(h
−1/4−ε).

Inserting these bounds in (4) then proves Theorem 2.
We note that Theorem 2 holds up to corners and also that the −1/4-power in The-

orem 2 is sharp. Indeed, it is not hard to show that the Gaussian beam eigenfunctions
associated with the major axis of the semi-ellipse saturate the bound in (2). Using
the Lp bound results for polygonal domains in [BFM], Matt Blair (personal commu-
nication) has recently proved that for polygonal domains one can dispense with the
h−ε-correction in Theorem 2. However, at the moment, for general domains with cor-
ners, we cannot rule out additional background diffractive effects in the restriction
bounds near corners leading to a possible h−ε loss. We hope to address this question
in detail elsewhere.

The results in both Theorems 1 and 2 should extend to the general Riemannian set-
ting of compact manifolds with boundary. However, the latter case presents additional
complications that we hope to address elsewhere using more sophiscated 2-microlocal
machinery.

Throughout the paper, given a set X and two non-negative functions f, g : X → R+,
the notation f / g means that there exists a constant C > 0 such that f(x) ≤ Cg(x)
for all x ∈ X. Similarily, the notation f ≈ g means that both f / g and g / f. In
addition, we will use the notation O(h−α−0) as a convenient shorthand for Oε(h

−α−ε)
for any ε > 0.

2. One point non-concentration in shrinking balls

Before jumping into the details of the proof of Theorem 1, let us sketch the main
intuitive idea. Suppose p0 is a point on a flat side of ∂Ω, and assume for simplicity that
∂Ω = {y = 0} locally near p0 and p0 = (0, 0). Let χ be a smooth monotone bounded

function, χ(y) ∼ h−1/2y in an h1/2 neighbourhood of y = 0, and constant outside a

neighbourhood of size Mh1/2 for large M . Then χ′(y) is a bump function supported

on −Mh1/2 ≤ y ≤ Mh1/2 with χ′(y) ∼ h−1/2 on −h1/2 ≤ y ≤ h1/2. We then apply a
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Rellich commutator type argument:∫
Ω

([−h2∆− 1, χ∂y]φh)φhdV

= −2

∫
Ω
χ′(y)(h2∂2

yφh)φhdV +O(1)

= 2

∫
Ω
χ′|h∂yφh|2dV +O(1)

' h−1/2

∫
B((0,0),h1/2)∩Ω

|h∂yφh|2dV −O(1).

Computing the commutator explicitly shows the left hand side is bounded. Adding
a similar computation with χ(x)∂x and rearranging would prove the theorem (for
δ = 1/2). A suitable h-dependent cutoff allows us to integrate by parts to go from
estimating ‖h∇φh‖L2(B) from below to estimating ‖φh‖L2(B) from below. Here the

O(1) error term is from differentiating χ twice: hχ′′ = O(1). This allows us to prove

the theorem at the limiting scale h1/2. The tricky part is using the δ = 1/2 result to
prove the result for δ = 2/3, and then apply an induction argument to get the result
for any δ < 1. Of course in this little sketch, the O(1) terms from integrating by parts,
etc. are actually very subtle in the case of Neumann eigenfunctions, and the bulk of
the proof is dealing with these “lower order terms”.

2.1. Proof of Theorem 1.

Proof of Theorem 1. For simplicity, we will assume throughout the proof that the
eigenfunctions φh are real-valued, however the general case can be obtained by taking
real/imaginary parts where necessary. This is not a problem since the quantity we
eventually want to compute is real-valued. However, assuming φh is real-valued does
save us some notational headaches.

The proof will proceed by looking at boundary pieces away from corners and at
corners separately, although the proof for corners has much in common with smooth
sides.

The proof has several steps. First we establish the result for δ = 1/2. The proof for
0 ≤ δ < 1/2 is similar (and easier), so we omit the details. Then we use the δ = 1/2
estimate to bootstrap the δ = 2/3 estimate. Again, for 1/2 < δ < 2/3, the proof is the
same as for δ = 2/3 (but again easier). Our final step is an induction to prove that for
any integer k > 0 the result is true for δ = 1− 1/3k.

We will employ a number of convenient cutoff functions.
Let χ̃(s) ∈ C∞(R) satisfy the following conditions:

• χ̃ is odd,
• χ̃′ ≥ 0,
• χ̃(s) ≡ −1 for s ≤ −3 and χ̃(s) ≡ 1 for s ≥ 3,
• χ̃(−1) = −1/2 and χ̃(1) = 1/2,
• χ̃(s) = s

2 for −1 ≤ s ≤ 1.

See Figure 1 for a picture.
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−3 −1 1 3

Figure 1. A sketch of the function χ̃ used in the proof of Theorem 1.

Let γ(s) = χ̃′(s) so that γ has support in {−3 ≤ s ≤ 3}, γ(s) ≥ 0, and γ(s) ≡ 1/2
for |s| ≤ 1.

Choose also a smooth bump function ψ̃(s) ∈ C∞(R) satisfying

• ψ̃(s) is even and ψ̃′ ≤ 0 for s ≥ 0,

• ψ̃(s) ≡ 1 for −1 ≤ s ≤ 1,

• ψ̃(s) ≡ 0 for |s| ≥ 2.

2.1.1. Analysis away from corner points. We first consider a boundary point p0 which
is on a smooth component of the boundary Γ away from corners. Rotate, translate,
and use graph coordinates so that Γ ⊂ {y = α(x)} for locally smooth α, p0 = (0, 0),
and Ω lies below the curve y = α(x). We will eventually need to invert y = α(x),
so rotate further if necessary to assume that α′(0) = 1. Let β = α−1 so that y =
α(x) ⇐⇒ x = β(y) locally near (0, 0). We assume as before that Ω lies below the
curve y = α(x); that is, Ω ⊂ {(x, y); y < α(x)}.

Let κ = (1 + (α′)2)
1
2 be the arclength element with respect to x. Then the normal

and tangential derivatives are respectively

∂ν = −α
′

κ
∂x +

1

κ
∂y, ∂τ =

1

κ
∂x +

α′

κ
∂y (5)

so that

∂x =
1

κ
∂τ −

α′

κ
∂ν , ∂y =

α′

κ
∂τ +

1

κ
∂ν . (6)

For ε > 0 sufficiently small but independent of h, let

χ(x, y) = χ̃(x/h1/2)ψ̃(x/ε)ψ̃(y/ε). (7)

If ε > 0 is sufficiently small, we may assume that supp (χ|∂Ω) ⊂ Γ. We have

χ(x, y) = x/2h1/2 for −h1/2 ≤ x ≤ h1/2 and −ε ≤ y ≤ ε. We use the short hand
notation χx := ∂xχ, χy := ∂yχ, so suppχx consists of three connected components,

one near zero, one near −ε, and one near ε. Note: since χ̃(x/h1/2) is constant for

x ≤ −3h1/2 and x ≥ 3h1/2, we have that χx depends on h for −3h1/2 ≤ x ≤ 3h1/2,
but on the set {|x| ≥ ε}, χx = ε−1χ̃(x/h1/2)ψ̃′(x/ε)ψ̃(y/ε) is independent of h. This
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(0, 0)

y = α(x)

χ ≡ χ̃(x/h
1
2 )

supp (χ)

Figure 2. Ω in a neighbourhood of a point on a smooth side and the
function χ.

means that

χx(x, y) ≥ h−1/2γ(x/h1/2)γ(y/h1/2)−O(1) (8)

so that, in particular, χx ≥ h−1/2/4 on B((0, 0), h1/2).
In order to ease notation, let r > 0 be a small parameter not depending on h such

that r � ε but a r neighbourhood of (0, 0) still does not meet any corners. This is just
so that integrating in [−r, r]2 ∩ Ω includes the full support of χ inside Ω. See Figure
2 for a picture.

We will use a Rellich-type commutator argument, but terms that appear “lower
order” have non-trivial dependence on h and are not really lower order. We have

[−h2∆, χ∂x] = −2χxh
2∂2
x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x.

Since χxx = O(h−1) and χy and χyy are bounded independent of h, we have∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

=

∫
Ω

((−2χxh
2∂2
x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x)φh)φhdV. (9)

We recall the standard estimate for first order derivatives:∫
Ω
|h∇φh|2dV =

∫
Ω

(−h2∆φh)φhdV = 1.
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We further have ∫
Ω
χy(h∂xh∂yφh)φhdV

=

∫ r

−r

∫ α(x)

r
χy(h∂yh∂xφh)φhdydx

= −
∫ r

−r

∫ α(x)

r
(h∂xφh)(hχyyφh + χyh∂yφh)dydx

+

∫ r

−r
hχy(h∂xφh)φh|

α(x)
−r dx.

For the boundary term, the support properties of χ means∫ r

−r
hχy(h∂xφh)φh|

α(x)
−r dx =

∫ r

−r
hχy(h∂xφh)φh(x, α(x))dx.

Along the face y = α(x), we have h∂xφh = κ−1h∂τφh, so, in tangent coordinates,∫ r

−r
hχy(h∂xφh)φh(x, α(x))dx

=

∫
hχyκ

−1(h∂τφh)φhdS

=
h2

2

∫
χyκ

−1∂τ |φh|2dS

= −h
2

2

∫
(∂τχyκ

−1)|φh|2dS. (10)

The function ∂τχyκ
−1 = O(h−1/2), so, using the standard h-Sobolev estimates,∣∣∣∣h2

2

∫
(∂τχyκ

−1)|φh|2dS
∣∣∣∣

= O(h1/2)

∫
Ω

(|h∇φh|2 + |φh|2dV )

= O(h1/2). (11)

This implies ∫
Ω
χy(h∂xh∂yφh)φhdV = O(1),

so that (9) becomes ∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

= −2

∫
Ω

(χxh
2∂2
xφh)φhdV +O(1).
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Since supp χx ⊂ {(x, y);β(y) < x < r, |y| < r}, by an integration by parts,

−2

∫
Ω

(χxh
2∂2
xφh)φhdV

= −2

∫ r

−r

∫ r

β(y)
(χxh

2∂2
xφh)φhdxdy

= 2

∫ r

−r

∫ r

β(y)
(χxh∂xφh)h∂xφhdxdy

+ 2

∫ r

−r

∫ r

β(y)
h(χxxh∂xφh)φhdxdy

− 2

∫ r

−r
((hχxh∂xφh)φh) |rβ(y)dy

= 2

∫ r

−r

∫ r

β(y)
χx|h∂xφh|2dxdy

− 2

∫ r

−r
(h(χxh∂xφh)φh) |rβ(y)dy +O(1), (12)

where we have again used that χxx = O(h−1). Unfortunately, as χx = O(h−1/2), the
boundary term is not necessarily bounded in the Neumann case.

However, we will see that the largest part miraculously cancels with a similar bound-
ary term when we run a similar argument for a vector field in the ∂y direction. Let

I1 = −2

∫ r

−r
((hχxh∂xφh)φh) |r(β(y),y)dy

be the boundary term from (12). Using the support properties of χx, we have χx(r, y) =
0, so that

I1 = 2

∫ r

−r
((hχxh∂xφh)φh) (β(y), y)dy.

We now change variables y = α(x) so that

I1 = 2

∫ r

−r
((hχxh∂xφh)φh) (x, α(x))α′dx. (13)

We will return to this shortly.
Consider now the function

ρ(x, y) := α′(x)χ̃(β(y)/h1/2)ψ̃(x/ε)ψ̃(y/ε). (14)

We have

[−h2∆− 1, ρ∂y] = −2ρyh
2∂2
y − hρyyh∂y − 2ρxh∂yh∂x − hρxxh∂y.

Again, since ρyy = O(h−1) and ρx and ρxx are bounded, we have∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV = −2

∫
Ω

(ρyh
2∂2
yφh)φhdV +O(1).
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We again integrate by parts, but now in the y direction. We have

−2

∫
Ω

(ρyh
2∂2
yφh)φhdV

= −2

∫ r

−r

∫ α(x)

−r
(ρyh

2∂2
yφh)φhdydx

= 2

∫ r

−r

∫ α(x)

−r
ρy|h∂yφh|2dydx

+ 2

∫ r

−r

∫ α(x)

−r
(hρyyh∂yφh)φhdydx

− 2

∫ r

−r
((hρyh∂yφh)φh) |α(x)

r dx

= 2

∫ r

−r

∫ α(x)

−r
(ρyh∂yφh)h∂yφhdydx

− 2

∫ r

−r
((hρyh∂yφh)φh) (x, α(x))dx+O(1). (15)

Here we have again used that ρyy = O(h−1) and that ρy(x,−r) = 0.
Now let

I2 = −2

∫ r

−r
((hρyh∂yφh)φh) (x, α(x))dx (16)

be the boundary term from (15). We observe that

ρy = α′(x)β′(y)h−1/2χ̃′(β(y)/h1/2)ψ̃(x/ε)ψ̃(y/ε) +O(1).

In (15), we are evaluating at y = α(x), so we get

ρy(x, α(x)) = α′(x)β′(α(x))h−1/2χ̃′(x/h1/2)ψ̃(x/ε)ψ̃(α(x)/ε) +O(1)

= χx(x, α(x)) +O(1) (17)

with χ as in (7). Substituting into (16), we have

I2 = −2

∫ r

−r
((hχxh∂yφh)φh) (x, α(x))dx+O(1).

We now use the Neumann boundary conditions. We have

0 = ∂νφh(x, α(x))

= −α
′

κ
∂xφh(x, α(x)) +

1

κ
∂yφh(x, α(x)) (18)

so that α′∂xφh(x, α(x)) = ∂yφh(x, α(x)). Substituting into (13), we have
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I1 + I2 = 2

∫ r

−r
((hχxh∂xφh)φh) (x, α(x))α′dx

− 2

∫ r

−r
((hρyh∂yφh)φh) (x, α(x))dx

= 2

∫ r

−r
((hχxh∂xφh)φh) (x, α(x))α′dx

− 2

∫ r

−r
((hχxh∂yφh)φh) (x, α(x))dx+O(1)

= O(1). (19)

Summing (12) and (15) we have∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

= 2

∫
Ω
χx|h∂xφh|2dV + 2

∫
Ω
ρy|h∂yφh|2dV +O(1).

From (8) we have

χx ≥ h−1/2γ(x/h1/2)γ(y/h1/2)−O(1),

and similarly

ρy ≥ h−1/2γ(x/h1/2)γ(y/h1/2)−O(1).

Hence ∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

≥
∫

Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(|h∂xφh|2 + |h∂yφh|2)dV −O(1)

=

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(−h2∂2

xφh − h2∂2
yφh)φhdV

+ h

∫
∂Ω
h−1/2γ(x/h1/2)γ(y/h1/2)(h∂νφh)φhdS −O(1)

=

∫
Ω
h−1/2γ(x/h1/2)γ(y/h1/2)|φh|2dV −O(1), (20)

where, in the last line of (20), we have used the eigenfunction equation and the Neu-
mann boundary conditions. Since∫

Ω
h−1/2γ(x/h1/2)γ(y/h1/2)|φh|2dV ≥

1

4

∫
B(p0,h1/2)

h−1/2|φh|2dV,
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we have

1

4

∫
B(p0,h1/2)

h−1/2|φh|2dV ≤
∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV +O(1). (21)

Expanding the commutator, using the eigenfunction equation, and integrating by
parts, we have

∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

=

∫
Ω

((−h2∆− 1)χ∂xφh)φhdV −
∫

Ω
(χ∂x(−h2∆− 1)φh)φhdV

=

∫
Ω

(χ∂xφh)((−h2∆− 1)φh)dV −
∫
∂Ω

(h∂νχh∂xφh)φhdS

+

∫
∂Ω

(χh∂xφh)(h∂νφh)dS

= −
∫
∂Ω

(h∂νχh∂xφh)φhdS. (22)

Using (5), (6), and the Neumann boundary conditions, we have

h∂νχh∂xφh =

(
−α
′

κ
h∂x +

1

κ
h∂y

)
χh∂xφh

=

(
−α
′

κ
hχx +

1

κ
hχy

)
h∂xφh

+ χh∂νh∂xφh

=

(
−α
′

κ
hχx +

1

κ
hχy

)(
1

κ

)
h∂τφh

− χα
′

κ
h2∂2

νφh +O(h)h∂τφh

= −α
′

κ2
hχxh∂τφh − χ

α′

κ
h2∂2

νφh +O(h)h∂τφh. (23)

Remark 5. Here is where we see that dealing with the boundary terms for the Neu-
mann eigenfunctions is significantly more difficult than in the case of Dirichlet eigen-
functions. Indeed, in the easier case of Dirichlet eigenfunctions, since Ω is convex,∫
∂Ω |h∂νφh|

2dS is bounded and the integrand has a sign.
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Plugging (23) into (22) and using integration by parts and Sobolev embedding for
the O(h) terms as we did in (10)-(11), we have∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2

νφh

)
φhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τφh

)
φhdS +O(1).

A similar computation gives∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

= −
∫
∂Ω

(
ρ

1

κ
h2∂2

νφh

)
φhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τφh

)
φhdS +O(1).

Recalling that

ρ(x, α(x)) = α′χ(x, α(x))

and

ρy(x, α(x)) = χx(x, α(x)) +O(1),

we sum: ∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2

νφh

)
φhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τφh

)
φhdS

−
∫
∂Ω

(
ρ

1

κ
h2∂2

νφh

)
φhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τφh

)
φhdS +O(1)

= O(1), (24)

since the displayed terms on the RHS of (24) all cancel.
Finally, equating (21) with (24), we get∫

B(p0,h1/2)
h−1/2|φh|2dV = O(1)

as asserted.
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2.1.2. Analysis near corner points. We now consider the case where p0 is a corner.
Translate and rotate so that p0 = (0, 0), and ∂Ω locally has two smooth sections. That
is, after a rotation and translation, there exist locally smooth functions α1 and α2 such
that α1 is monotone increasing, α2 is monotone decreasing, α′1(0) > 0, and α′2(0) < 0,
and near (0, 0)

∂Ω = {y = α1(x); 0 ≤ x ≤ η} ∪ {y = α2(x); 0 ≤ x ≤ η}

for some η > 0 independent of h. We assume further that locally Ω lies to the right of
these sections (this is automatic due to convexity of Ω). Then locally each αj has an
inverse, which we denote βj . That is, near (0, 0), y = αj(x) ⇐⇒ x = βj(y).

We will need to know the tangential and normal derivatives in these coordinates.
For the top section where y = α1(x), we have already computed in (5) and (6) with α

replaced by α1. For the bottom section where y = α2(x), let κ2 = (1 + (α′2)2)
1
2 so that

the tangent is τ = κ−1
2 (1, α′2). Recalling that α′2 < 0 near 0, the outward unit normal

then is ν = κ−1
2 (α′2,−1). Hence

∂ν =
α′2
κ2
∂x −

1

κ2
∂y, ∂τ =

1

κ2
∂x +

α′2
κ2
∂y (25)

so that

∂x =
1

κ2
∂τ +

α′2
κ2
∂ν , ∂y =

α′2
κ2
∂τ −

1

κ2
∂ν . (26)

For ε > 0 sufficiently small, let χ(x, y) be the same as in (7). We again use a param-
eter r � ε but sufficiently small that [−r, r]2 does not meet any other corners. Again,
this is just to ease notation in our integral expressions. Applying the same commutator
argument as in the smooth boundary segment case, the interior computations are the
same, we just need to check what happens on the boundary. The key difference from
the case with no corners is that boundary integrals have to be considered piecewise.
See Figure 3 for a picture of the setup.

Integrating by parts in the x direction on the interior terms, we have:

∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV = −2

∫
Ω
χx(h2∂2

xφh)φhdV +O(1)

= −2

∫ 0

−r

∫ r

x=β2(y)
χx(h2∂2

xφh)φhdxdy

− 2

∫ r

0

∫ r

x=β1(y)
χx(h2∂2

xφh)φhdxdy +O(1)

=: I1 + I2 +O(1).
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(0, 0)

y = α1(x)χ ≡ χ̃(x/h
1
2 )

y = α2(x)

ρ1 ≡ α′1χ̃(β1(y)/h
1
2 )

ρ2 ≡ α′2χ̃(β2(y)/h
1
2 )

Figure 3. Ω in a neighbourhood of a corner and the functions χ, ρ1,
and ρ2.

Let us examine I1 first:

I1 = 2

∫ 0

−r

∫ r

β2(y)
hχxx(h∂xφh)φhdxdy + 2

∫ 0

−r

∫ r

β2(y)
χx(|h∂xφh|2)dxdy

− 2

∫ 0

y=−r
hχx(h∂xφh)φh|x=r

x=β2(y)dy

= 2

∫ 0

−r

∫ r

β2(y)
χx|h∂xφh|2dxdy

+ 2

∫ 0

y=−r
(hχx(h∂xφh)φh)(β2(y), y)dy +O(1),

since χ has support in x ≤ 2ε� r, and hχxx = O(1).
Similarly,

I2 = 2

∫ r

0

∫ r

β1(y)
χx(|h∂xφh|2dxdy

+ 2

∫ r

0
(hχx(h∂xφh)φh)(β1(y), y)dy +O(1).
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Summing, we have∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

= I1 + I2 +O(1)

= 2

∫
Ω
χx(|h∂xφh|2dxdy

+ 2

∫ 0

y=−r
(hχx(h∂xφh)φh)(β2(y), y)dy

+ 2

∫ r

y=0
(hχx(h∂xφh)φh)(β1(y), y)dy +O(1).

For the two boundary terms, we change variables y = α2(x) and y = α1(x) respectively
to get ∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

= 2

∫
Ω
χx(|h∂xφh|2dxdy − 2

∫ r

0
α′2(x)(hχx(h∂xφh)φh)(x, α2(x))dx

+ 2

∫ r

0
α′1(x)(hχx(h∂xφh)φh)(x, α1(x))dx+O(1). (27)

Note the sign change on the second integral to correct for reversed orientation in the
x direction.

We now want to employ a similar argument with ∂y. However, our function ρ cannot
be globally defined if we want to write ρ in terms of χ on the boundary, since we are
not assuming any relation between α1 and α2. Let

Ω1 = Ω ∩ {x ≤ r} ∩ {y ≥ 0},
and

Ω2 = Ω ∩ {x ≤ r} ∩ {y ≤ 0}
be the top and bottom parts of Ω near (0, 0). For j = 1, 2, let

ρj(x, y) := α′j(x)χ̃(βj(y)/h
1
2 )ψ̃(x/ε)ψ̃(y/ε), j = 1, 2. (28)

See Figure 3 for a picture of the setup.
Let us record some facts about the ρj ’s. First, along y = αj , j = 1, 2, we have

ρj(x, αj(x)) = α′j(x)χ̃(x/h
1
2 )ψ̃(x/ε)ψ̃(αj(x)/ε) = α′jχ(x, αj(x)). (29)

Along y = 0, ρj = 0, since χ̃ is an odd function and βj(0) = 0 for j = 1, 2. Along
y = αj ,

∂yρj(x, αj(x)) = h−
1
2α′j(x)β′j(αj(x))χ̃′(x/h

1
2 )ψ̃(x/ε)ψ̃(αj(x)/ε) +O(1)

= h−
1
2 χ̃′(x/h

1
2 )ψ̃(x/ε)ψ̃(αj(x)/ε) +O(1)

= ∂xχ(x, αj(x)) +O(1).
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Here the implicit O(1) errors are from differentiating the ψ̃ functions so are supported

away from the corners. Finally, along y = 0, we have χ̃′(0) = 1/2 and ψ̃′(0) = 0, so
that

∂yρj(x, 0) = h−
1
2 χ̃′(0)ψ̃(x/ε)ψ̃(0) (30)

= (h−1/2/2)ψ̃(x/ε). (31)

Now consider the vector field ρ1∂y on Ω1. The same commutator computation and
integrations by parts in y yields the following:

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV

= −2

∫
Ω1

ρ1,y(h
2∂2
yφh)φhdV +O(1)

= −2

∫ r

x=0

∫ y=α1(x)

y=0
ρ1,y(h

2∂2
yφh)φhdydx+O(1)

= 2

∫ r

x=0

∫ y=α1(x)

y=0
ρ1,y|h∂yφh|2dydx− 2

∫ r

x=0
hρ1,y(h∂yφh)φh|

y=α1(x)
y=0 dx+O(1)

= 2

∫
Ω1

ρ1,y|h∂yφh|2dydx− 2

∫ r

x=0
(hρ1,y(h∂yφh)φh)(x, α1(x))dx

+ 2

∫ r

x=0
(hρ1,y(h∂yφh)φh)(x, 0)dx+O(1)

= 2

∫
Ω1

ρ1,y|h∂yφh|2dydx

− 2

∫ r

x=0
(h(χx +O(1))(h∂yφh)φh)(x, α1(x))dx

+ 2

∫ r

x=0
(h−1/2/2)ψ̃(x/ε)(h(h∂yφh)φh)(x, 0)dx+O(1)

= 2

∫
Ω1

ρ1,y|h∂yφh|2dV − 2

∫ r

x=0
(hχx(h∂yφh)φh)(x, α1(x))dx

+ h
1
2

∫ r

x=0
ψ̃(x/ε)(h∂yφh)φh(x, 0)dx+O(1). (32)

Here we have used integration by parts along the boundary and Sobolev embedding
on the implicit O(h) boundary terms supported away from the corner, just as in (10)-
(11).
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A similar computation on Ω2 using the vector field ρ2∂y gives∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= −2

∫
Ω2

ρ2,y(h
2∂2
yφh)φhdV +O(1)

= −2

∫ r

x=0

∫ y=0

y=α2

ρ2,y(h
2∂2
yφh)φhdydx+O(1)

= 2

∫ r

x=0

∫ y=0

y=α2

ρ2,y|h∂yφh|2dydx− 2

∫ r

x=0
hρ1,y(h∂yφh)φh|y=0

y=α2
dx+O(1)

= 2

∫
Ω2

ρ2,y|h∂yφh|2dV − h
1
2

∫ r

x=0
ψ̃(x/ε)(h∂yφh)φh(x, 0)dx

+ 2

∫ r

x=0
hχx(h∂yφh)φh(x, α2(x))dx+O(1). (33)

Summing (32) and (33) and making the obvious cancellations, we have∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= 2

∫
Ω1

ρ1,y|h∂yφh|2dV + 2

∫
Ω2

ρ2,y|h∂yφh|2dV

− 2

∫ r

x=0
(hχx(h∂yφh)φh)(x, α1(x))dx

+ 2

∫ r

x=0
hχx(h∂yφh)φh(x, α2(x))dx+O(1). (34)

We now use the Neumann boundary conditions on φh and sum (27) and (34). On
the top segment where y ≥ 0, we have (5) and (6) so

0 = ∂νφh = −α
′
1

κ1
∂xφh +

1

κ1
∂yφh.

Then ∂yφh = α′1∂xφh on the upper section. Similarly, on the bottom section we have
(25) and (26) so that ∂yφh = α′2∂xφh. Consequently, (34) becomes∫

Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= 2

∫
Ω1

ρ1,y|h∂yφh|2dV + 2

∫
Ω2

ρ2,y|h∂yφh|2dV

− 2

∫ r

x=0
(hχx(α′1h∂xφh)φh)(x, α1(x))dx

+ 2

∫ r

x=0
hχx(α′2h∂xφh)φh(x, α2(x))dx+O(1). (35)
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Now summing (27) and (35) and making the obvious cancellations, we have

∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= 2

∫
Ω
χx(|h∂xφh|2dV + 2

∫
Ω1

ρ1,y|h∂yφh|2dV + 2

∫
Ω2

ρ2,y|h∂yφh|2dV +O(1).

(36)

It remains to compute the commutators on the LHS of (36). By Green’s formula,

∫
Ω

([−h2∆− 1, χ(x, y)∂x]φh)φhdV = −
∫
∂Ω

(h∂νχh∂xφh)φhdS

and for j = 1, 2

∫
Ωj

([−h2∆− 1, ρj(x, y)∂y]φh)φhdV

= −
∫
∂Ωj

(h∂νρjh∂yφh)φhdS +

∫
∂Ωj

(ρjh∂yφh)(h∂νφh)dS

= −
∫
∂Ωj

(h∂νρjh∂yφh)φhdS.

Here the second integral in the second line is zero since φh has Neumann boundary
conditions along the boundary y = α1, and ρj = 0 along the line y = 0.

On the upper segment, we use that ∂ν = −α′1
κ1
∂x + 1

κ1
∂y, and ∂x = 1

κ1
∂τ −

α′1
κ1
∂ν to

get

h∂νχh∂xφh = χh∂xh∂νφh + [h∂ν , χh∂x]φh

= −α
′
1

κ1
χh2∂2

νφh −
α′1
κ2

1

hχxh∂τφh +O(h)h∂τφh.

Similarly, on the lower segment, ∂ν =
α′2
κ2
∂x − 1

κ2
∂y and ∂x = 1

κ2
∂τ +

α′2
κ2
∂ν so that

h∂νχh∂xφh =
α′2
κ2
χh2∂2

νφh +
α′2
κ2

2

hχxh∂τφh +O(h)h∂τφh.
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Plugging in, we have∫
Ω

([−h2∆− 1, χ(x, y)∂x]φh)φhdV

= −
∫
∂Ω

(h∂νχh∂xφh)φhdS

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂νφh −

α′1
κ2

1

hχxh∂τφh +O(h)h∂τφh)φhdS

−
∫
∂Ω∩{y≤0}

(
α′2
κ2
χh2∂νφh +

α′2
κ2

2

hχxh∂τφh +O(h)h∂τφh)φhdS

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂νφh −

α′1
κ2

1

hχxh∂τφh)φhdS

−
∫
∂Ω∩{y≤0}

(
α′2
κ2
χh2∂νφh +

α′2
κ2

2

hχxh∂τφh)φhdS +O(1), (37)

where we have again used integration by parts along the boundary and Sobolev em-
bedding on the implicit O(h) boundary terms supported away from the corner, just as
we did in (10)-(11).

For the computations involving the vector fields ρj∂y, we have by Green’s formula

∫
Ωj

([−h2∆− 1, ρj∂y]φh)φhdV

= −
∫
∂Ωj

(h∂νρjh∂yφh)φhdS

= −
∫
{y=α1(x)}

(h∂νρjh∂yφh)φhdS −
∫
{y=0}

(h∂νρjh∂yφh)φhdS,

since ψ̃(x/ε) has compact support in {x ≤ 2ε � r}. Using the same computations
which led to (37), on {y = α1}, we have

h∂νρ1h∂yφh =
1

κ1
ρ1h

2∂2
νφh +

α′1
κ2

1

hρ1,yh∂τφh +O(h)h∂τφh.

On {y = 0}, from Ω1, we have ∂ν = −∂y, so that

h∂νρ1h∂yφh = −h∂yρ1h∂yφh

= −hρ1,yh∂yφh − ρ1h
2∂2
yφh

= −hρ1,yh∂yφh

= −(h
1
2 /2)ψ̃(x/ε)h∂yφh,
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since ρ1(x, 0) = 0. In the last line we have used (31). Putting this together, we have

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV

= −
∫
∂Ω1

(h∂νρ1h∂yφh)φhdS

= −
∫
{y=α1}

(h∂νρ1h∂yφh)φhdS −
∫
{y=0}

(h∂νρ1h∂yφh)φhdS

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2
νφh +

α′1
κ2

1

hρ1,yh∂τφh +O(h)h∂τφh)φhdS

−
∫
{y=0}

(−hρ1,yh∂yφh)φhdS

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2
νφh +

α′1
κ2

1

hρ1,yh∂τφh)φhdS

−
∫
{y=0}

(−(h
1
2 /2)ψ̃(x/ε)h∂yφh)φhdS +O(1). (38)

Here we have once again used the Sobolev embedding on the implicit O(h) boundary
terms just as we did in (10)-(11).

In a similar fashion, we compute for Ω2:

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= −
∫
∂Ω2

(h∂νρ2h∂yφh)φhdS

= −
∫
{y=α2}

(− 1

κ2
ρ2h

2∂2
νφh −

α′2
κ2

1

hρ2,yh∂τφh)φhdS

−
∫
{y=0}

((h
1
2 /2)ψ̃(x/ε)h∂yφh)φhdS +O(1). (39)

Here in the last line we have used that, from Ω2, ∂ν = ∂y along {y = 0}.
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Summing (38) and (39), we have

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2
νφh +

α′1
κ2

1

hρ1,yh∂τφh)φhdS

+

∫
{y=0}

((h
1
2 /2)ψ̃(x/ε)h∂yφh)φhdS

+

∫
{y=α2}

(
1

κ2
ρ2h

2∂2
νφh +

α′2
κ2

2

hρ2,yh∂τφh)φhdS

−
∫
{y=0}

((h
1
2 /2)ψ̃(x/ε)h∂yφh)φhdS +O(1)

= −
∫
{y=α1}

(
1

κ1
ρ1h

2∂2
νφh +

α′1
κ2

1

hρ1,yh∂τφh)φhdS

+

∫
{y=α2}

(
1

κ2
ρ2h

2∂2
νφh +

α′2
κ2

2

hρ2,yh∂τφh)φhdS +O(1) (40)

From (29), we know that

ρj(x, αj(x)) = α′jχ(x, αj(x))

and

ρj,y(x, αj(x)) = χx(x, αj(x)) +O(1),

so that (40) becomes

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= −
∫
{y=α1}

(
1

κ1
α′1χh

2∂2
νφh +

α′1
κ2

1

hχxh∂τφh)φhdS

+

∫
{y=α2}

(
1

κ2
α′2χh

2∂2
νφh +

α′2
κ2

2

hχxh∂τφh)φhdS +O(1) (41)
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Summing (37) and (41), we have∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= −
∫
∂Ω∩{y≥0}

(−α
′
1

κ1
χh2∂νφh −

α′1
κ2

1

hχxh∂τφh)φhdS

−
∫
∂Ω∩{y≤0}

(
α′2
κ2
χh2∂νφh +

α′2
κ2

2

hχxh∂τφh)φhdS

−
∫
{y=α1}

(
1

κ1
α′1χh

2∂2
νφh +

α′1
κ2

1

hχxh∂τφh)φhdS

+

∫
{y=α2}

(
1

κ2
α′2χh

2∂2
νφh +

α′2
κ2

2

hχxh∂τφh)φhdS +O(1). (42)

All of the displayed boundary terms in (42) cancel, so that∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω1

([−h2∆− 1, ρ1∂y]φh)φhdV +

∫
Ω2

([−h2∆− 1, ρ2∂y]φh)φhdV

= O(1). (43)

Finally, equating (36) and (42), we have shown

2

∫
Ω
χx(|h∂xφh|2dV + 2

∫
Ω1

ρ1,y|h∂yφh|2dV + 2

∫
Ω2

ρ2,y|h∂yφh|2dV = O(1).

Using the same estimates as in (8), we have that

χx ≥ h−1/2γ(x/h1/2)γ(y/h1/2)γ(y/h1/2)−O(1)

and on each of Ωj ,

ρj,y ≥ h−1/2γ(x/h1/2)γ(y/h1/2),

so arguing as in (20), we finally get∫
B((0,0),h

1
2 )
h−

1
2 |φh|2dV = O(1).

Step 2: δ = 2/3.
We are now ready to bootstrap the estimate for δ = 2/3. The argument proceeds

exactly as in the δ = 1/2 case, but now some of the error terms are no longer so easy
to absorb. We begin with the case where p0 is not a corner, starting with defining the
cutoff χ as in (7). For ε > 0 small but independent of h, let

χ(x, y) = χ̃(x/h2/3)ψ̃(x/ε)ψ̃(y/ε). (44)
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Observe the only difference in (44) versus the cutoff in (7) is the h−2/3 appearing

instead of h−1/2. This is good, since we will once again need some boundary terms to
cancel. The argument is identical to the argument in the δ = 1/2 case except for one

piece: χxx is no longer O(h−1) but instead is O(h−4/3). We will have to work harder
to control this.

Beginning with the commutator, since χy and χyy are both bounded, we have∫
Ω

([−h2∆− 1, χ∂x]φh)φhdV

=

∫
Ω

((−2χxh
2∂2
x − hχxxh∂x − 2χyh∂xh∂y − hχyyh∂x)φh)φhdV

= −2

∫
Ω

(χxh
2∂2
xφh)φhdV −

∫
Ω
hχxx(h∂xφh)φhdV +O(1).

Let

I =

∫
Ω
hχxx(h∂xφh)φhdV.

Even though χxx = O(h−4/3), we will nevertheless show I is bounded. Write

I =

∫ r

−r

∫ r

β(y)
hχxx(h∂xφh)φhdxdy

and integrate by parts:

I = −
∫ r

−r

∫ r

β(y)
(φh)h∂x(hχxxφh)dxdy +

∫ r

−r
h2χxx|φh|2|rβ(y)dy

= −I − h2

∫ r

−r

∫ r

β(y)
χxxx|φh|2dxdy +

∫ r

−r
h2χxx|φh|2|rβ(y)dy. (45)

Let

I1 = h2

∫ r

−r

∫ r

β(y)
χxxx|φh|2dxdy.

We have χxxx = h−2, so I1 = O(1). We pause briefly here to observe that the function
χxxx still has large support in the y direction, so we cannot use the δ = 1/2 non-
concentration estimate here. We use that for the next term: let

I2 =

∫ r

−r
h2χxx|φh|2|rβ(y)dy.

As before, the support properties of χ and its derivatives tells us

I2 = −
∫ r

−r
h2χxx|φh|2(β(y), y)dy.

Remark 6. Away from corners, the bound I2 = O(1) follows from the universal eigen-

function boundary restriction upper bound in (3). Indeed, since h2χxx = O(h2/3)χ̃xx,

I2 = O(h2/3)

∫
∂Ω
χ̃xx|φh|2dS = O(1)
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where the last estimate follows from the Tataru bound
∫
∂Ω χ̃xx|φh|

2dV = O(h−2/3)
since χ̃xx is supported away from corners. However, since we will need our estimates
to hold near corners as well, we give a more direct argument here to bound I2.

Note that I2 is a boundary integral with support in three different regions in the
x direction. We have χxx = O(h−4/3) for −3h2/3 ≤ x ≤ 3h2/3, and χxx = O(1)

for |x| ≥ 3h2/3. In the latter region, the boundary integral then has h2, so Sobolev

embedding gives O(h). It is on the region −3h2/3 ≤ x ≤ 3h2/3 where we may encounter

a problem. Let [a(h), b(h)] be the image in y of [−3h2/3, 3h2/3]. Using the support
properties of χ̃ and the Fundamental Theorem of Calculus to relate the boundary
integral to an interior integral (similar to a Sobolev estimate),

|I2| ≤ C
∫

[a(h),b(h)]
h2h−4/3|φh|2(β(y), y)dy

≤ Ch2/3

∫
B(p0,Mh2/3)

(∂x|φh|2)dV. (46)

Here M > 0 is a constant large enough so that

{(β(y), y) : a(h) ≤ y ≤ b(h)} ⊂ B(p0,Mh2/3),

But for h > 0 sufficiently small, B(p0,Mh2/3) ⊂ B(p0, h
1/2), so that, by an application

of the non-concentration bound for δ = 1/2 and Cauchy-Schwarz,

h2/3

∫
B(p0,Mh2/3)

(∂x|φh|2)dV

≤ 2h2/3

∫
B(p0,h1/2)

h−1|h∂xφh||φh|dV

≤ Ch2/3−1+1/2

= O(h1/6).

Combining this with the estimate on I1 and plugging into (45), we have

2I = O(1).

Now the computations (12)-(20) are identical, including the boundary cancellations,
leading to ∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

+

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

≥
∫

Ω
h−2/3γ(x/h2/3)γ(y/h2/3)|φh|2dV −O(1). (47)
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On the other hand, expanding the commutator, using the Neumann boundary con-
ditions, and applying Sobolev embedding as in (23) yields the exact same identity:∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

=

∫
∂Ω

(
χ
α′

κ
h2∂2

νφh

)
φhdS

+

∫
∂Ω

(
α′

κ2
hχxh∂τφh

)
φhdS +O(1).

And again, similar computations give∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

= −
∫
∂Ω

(
ρ

1

κ
h2∂2

νφh

)
φhdS

−
∫
∂Ω

(
α′

κ2
hρyh∂τφh

)
φhdS +O(1).

Again using the same miraculous cancellation on the boundary terms, we finally arrive
at ∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV +

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV = O(1).

Comparing to (47), we have∫
Ω
h−2/3γ(x/h2/3)γ(y/h2/3)|φh|2dV = O(1),

which completes the proof in the case p0 is not a corner.
We finally remark that we can follow along line by line the proof in the case p0 is a

corner with similar modifications as in the case δ = 1/2 to conclude the estimate with
δ = 2/3 holds at a corner as well.

Step 3 (induction): 2/3 < δ < 1.
Our goal now is to prove that for any integer k > 0, the theorem is true for δ =

1 − 1/3k. The case k = 1 has already been shown, so we are ready for the induction
step.

We will need better control over some of the boundary terms than we have had
previously. We will employ more or less the same cutoffs, so the same important
cancellation will occur, but it is the “lower order” terms we need to estimate. The
issue is that lower order for the induction means estimates for δ = 1−1/3k to prove the
estimates for δ = 1−1/3(k+1). Since in these cases δ > 2/3, this is more complicated.

In order to fix the ideas and notations, let χ̃ and ψ̃ be as in the start of the proof.
We work initially away from a corner, but the proof in the corner case follows line by
line as the proof in the δ = 1/2 case, with one notable exception which we shall point
out as we proceed.

Fix p0 ∈ ∂Ω away from a corner and rotate and translate as above so that p0 = (0, 0),
and locally ∂Ω is a graph y = α(x), α′(0) 6= 0. We also write β = α−1 so that the
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boundary can also be written x = β(y). Let r > 0 be as in the beginning of the proof,
a number independent of h such that B(p0, r) does not meet any corners. Again, this
is just to avoid messy numerology when writing down our integral formulae.

Fix an integer k > 0 and let

ηk = 1− 1

3k
be the corresponding index. Let

χ = χ̃(x/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk). (48)

We observe that this cutoff has derivative ∼ h−ηk+1 for x in an hηk+1 neighbourhood,
but is supported in a neighbourhood of size hηk . In particular, we record the following
facts:

• χ(x, y) = x/2hηk+1 for −hηk+1 ≤ x ≤ hηk+1 and −hηk ≤ y ≤ hηk .
• χ is supported in [−2hηk , 2hηk ]2.
• The support of χx has three connected components in x:

χx = 1/2hηk+1 , |x| ≤ hηk+1 ,

and

χx = O(h−ηk+1), |x| ≤ 3hηk+1 ;

χx = 0, 3hηk+1 ≤ |x| ≤ hηk ;

and

χx = O(h−ηk), hηk ≤ |x| ≤ 2hηk .

The purpose for replacing ψ̃ with ψ̃2 will become apparent shortly.
Claim: For h > 0 sufficiently small, we have the estimate∫

Ω
χ(|h∂xφ|2 + |h∂yφ|2)dV = O(hηk). (49)

To prove the claim, we will integrate by parts. We first get rid of the χ̃ part:

|χ| ≤ ψ̃2(x/hηk)ψ̃2(y/hηk).

In order to ease notation, let ψk(x) = ψ̃(x/hηk) and similarly for ψk(y). Then we
integrate by parts. Letting I denote the integral (after removing the χ̃):

I =

∫
Ω
ψ2
k(x)ψ2

k(y)(|h∂xφ|2 + |h∂yφ|2)dV

=

∫
Ω
ψ2
k(x)ψ2

k(y)(−h2∆φ)φdV

−
∫

Ω
2h1−ηk ψ̃′(x/hηk)ψk(x)ψ2

k(y)(h∂xφ)φdV

−
∫

Ω
2h1−ηkψ2

k(x/h)ψ̃′(y/hηk)ψk(y)(h∂yφ)φdV

+

∫
∂Ω
hψ2

k(x)ψ2
k(y)(h∂νφ)φdS.
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The last term is zero due to the Neumann boundary conditions. For the remaining
terms, observe that 1 − ηk > 0 so we can estimate the second and third terms using
Cauchy’s inequality:∣∣∣∣∣

∫
Ω

2h1−ηk ψ̃′(x/hηk)ψk(x)ψ2
k(y)(h∂xφ)φdV

+

∫
Ω

2h1−ηkψ2
k(x)ψ̃′(y/hηk)ψk(y)(h∂yφ)φdV

∣∣∣∣∣
≤ Ch1−ηk

∫
[−2hηk ,2hηk ]2

(ψ2
k(x)ψ2

k(y)|h∂xφ|2 + ψk(y)2|φ|2)dV

+ Ch1−ηk
∫

[−2hηk ,2hηk ]2
(ψ2

k(x)ψ2
k(y)|h∂yφ|2 + ψk(x)2|φ|2)dV.

Recall we are assuming the theorem is true for k, so we have∫
[−2hηk ,2hηk ]2

|φ|2dV = O(hηk).

Collecting terms, we have

I ≤ Ch1−ηkI +O(hηk).

Rearranging proves the claim.
We now use this to control boundary terms. This is really just a cheap version of

the usual Sobolev embedding, but we write out the details as it is important for the
corner case.

Claim: Let ζ(x) be a smooth function with support in {−3hηk ≤ x ≤ 3hηk}, ζ ≡ 1
for −2hηk ≤ x ≤ 2hηk , and ∂mx ζ = O(h−mηk). We have∫

∂Ω
ζ|φ|2dS = O(hηk−1).

To prove this claim, let

I =

∫
Ω
ζ(x)ζ(y/M)(h∂xφ)φdV.

The number M is simply chosen large enough, independent of h so that the function
ζ(β(y))ζ(y/M) = ζ(β(y)), and supp ζ(x)ζ(y/M) is in an hηk neighbourhood of p0.
From our first claim and Cauchy’s inequality,

|I| = O(hηk).
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Integrating by parts:

I =

∫ r

−r

∫ r

β(y)
ζ(x)ζ(y/M)(h∂xφ)φdxdy

= −I −
∫ r

−r

∫ r

β(y)
h∂x(ζ(x)ζ(y/M))|φ|2dxdy

− h
∫ r

−r
ζ(β(y))ζ(y/M)|φ|2dy

= O(hηk) +O(hh−ηkhηk)− h
∫ r

−r
ζ(β(y)|φ|2dy.

Rearranging proves the claim.

Remark 7. We pause now for an important observation which is the only place
the proof in the corner case deviates from the present case. We will eventually be
estimating boundary integrals such as those with h−ηk ψ̃′(x/hηk)ψk(x)ψ2

k(y) replacing
ζ(x)ζ(y/M). Observe that this is supported away from x = 0, so that, if (0, 0) is a
corner, this is supported away from the corner so that we can integrate by parts along
the boundary, even in the corner case.

We now follow the proof in the δ = 2/3 case. We compute the commutator, being
very careful for “lower order terms”. Recalling the definition (48) of χ:∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV

=

∫
Ω

((−2χxh
2∂2
x − hχxxh∂x − 2χyh∂yh∂x − hχyyh∂x)φh)φhdV. (50)

Let us examine each term separately. We have∫
Ω

(−2χxh
2∂2
xφh)φhdV

=

∫ r

−r

∫ r

β(y)
(−2χxh

2∂2
xφh)φhdxdy

=

∫ r

−r

∫ r

β(y)
(2χx|h∂xφh|2dxdy

+

∫ r

−r

∫ r

β(y)
(2hχxxh∂xφh)φhdxdy

−
∫ r

−r
2hχx(h∂xφh)φh|rβ(y)dy. (51)

The term in (51) with χxx also shows up in (50). We know that χxx = O(h−2ηk+1)
and is supported on a set of radius ∼ hηk , so our first claim gives∫

Ω
hχxx(h∂xφh)φhdV = O(hh−2ηk+1hηk)

= O(1),
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since

1− 2ηk+1 + ηk = 1− 2

(
1− 1

3(k + 1)

)
+ 1− 1

3k
=

k − 1

3k(k + 1)
≥ 0.

For the two remaining terms in (51), we need to use the support properties of χx.
We have

χx = h−ηk+1χ̃′(x/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk)

+ 2h−ηk χ̃(x/hηk+1)ψ̃′(x/hηk)ψ̃(x/hηk)ψ̃2(y/hηk).

Recalling our function γ(s) = χ̃′(s), we have

χx ≥ h−ηk+1γ(x/hηk+1)−O(h−ηk),

and let us stress again that the O(h−ηk) error term is supported on scale hηk . Hence
we have∫

Ω
2χx|h∂xφh|2dV ≥ h−ηk+1

∫
Ω
γ(x/hηk+1)γ(y/hηk+1)|h∂xφh|2dV −O(1).

We now examine the boundary term in (51). This is again where we must be mindful
of any differences between the case with or without corners. As in the previous steps
in the proof, we will also be using a commutant with the vector field ρ∂y, where

ρ = α′(x)χ̃(β(y)/hηk+1)ψ̃2(x/hηk)ψ̃2(y/hηk). (52)

The same cancellations of boundary terms will happen on the set where ρy = χx, which
is for −3hηk+1 ≤ x ≤ 3hηk+1 . For |x| ≥ 3hηk+1 , these functions do not necessarily agree,
but in this region both χx and ρy are O(h−ηk) rather than O(h−ηk+1). Further, they
are supported away from x = 0 so that we may further integrate by parts on the
boundary. That is,∫ r

−r
(2hχxh∂xφh)φh|rβ(y)dy

= −
∫ r

−r
2hh−ηk+1χ̃′(x/hηk+1)ψ̃2(β(y)/hηk)ψ̃2(y/hηk)h∂xφh)φh(β(y), y)dy

−
∫ r

−r
4hh−ηk χ̃(x/hηk+1)ψ̃′(β(y)/hηk)ψ̃(β(y)/hηk)ψ̃2(y/hηk)h∂xφh)φh(β(y), y)dy.

The cutoffs in the second term are supported away from x = 0, where χ̃ = ±1. Let τ
denote the tangent variable so that, as above,

∂yφh|∂Ω =
α′

κ
∂τφh|∂Ω.

Let

ζ̃(y) = χ̃(β(y)/hηk+1)ψ̃′(β(y)/hηk)ψ̃2(y/hηk),
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and let ζ(τ) denote ζ̃ in tangent coordinates, so that ∂mτ ζ = O(h−mηk). Then∫ r

−r
2hh−ηk χ̃(x/hηk+1)ψ̃′(β(y)/hηk)ψ̃(β(y)/hηk)ψ̃2(y/hηk)h∂xφh)φh(β(y), y)dy

=

∫
∂Ω
h2−ηkζ(τ)

α′

κ
∂τ (|φh|2)dτ

= −
∫
∂Ω
h2−ηk∂τ (ζ(τ)

α′

κ
)|φh|2dτ

= O(h2−2ηkhηk−1)

= O(1),

where we have used the second claim and that ηk < 1 for every k. Collecting terms,
we have∫ r

−r
(2hχxh∂xφh)φh|rβ(y)dy

= −
∫ r

−r
2hh−ηk+1χ̃′(β(y)/hηk+1)ψ̃2(β(y)/hηk)ψ̃2(y/hηk)h∂xφh)φh(β(y), y)dy +O(1).

Remark 8. We stress again here that this part of the proof is where we have to be
careful if p0 = (0, 0) is a corner. The above integrations by parts would not be possible
near a corner without the observation that the integrand is supported away from x = 0.

We continue with the other two terms in (50). We have χy = O(h−ηk) and hχyy =
O(h1−2ηk) = O(h−ηk), and we are integrating over a region of radius hηk , so using our
claim, ∫

Ω
((−2χyh∂yh∂x − hχyyh∂x)φh)φhdV = O(1).

We now use the vector field ρ∂y as in (52). All of the computations are similar,
once again singling out the boundary terms which are supported near x = 0 but where
χx = ρy and summing as in the δ = 2/3 case, we get∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV +

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV

= 2

∫
Ω
χx|h∂xφh|2dV + 2

∫
Ω
ρy|h∂yφh|2dV

−
∫ r

−r
2hh−ηk+1χ̃′(β(y)/hηk+1)ψ̃(β(y)/hηk)ψ̃(y/hηk)h∂xφh)φh(β(y), y)dy

+

∫ r

−r
2hh−ηk+1χ̃′(x/hηk+1)ψ̃(x/hηk)ψ̃(α(x)/hηk)h∂yφh)φh(x, α(x))dx+O(1)

≥ h−ηk+1

∫
Ω
γ(x/hηk+1)γ(y/hηk+1)|φh|2dV −O(1)

≥ 1

4
h−ηk+1

∫
Ω∩B(p0,h

ηk+1 )
|φh|2dV −O(1)
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Finally, we unpack the commutator as in the δ = 1/2 case and use the claims and
observations above to conclude that∫

Ω
([−h2∆− 1, χ∂x]φh)φhdV +

∫
Ω

([−h2∆− 1, ρ∂y]φh)φhdV = O(1).

This completes the proof in the case p0 is not a corner. In the case p0 is a corner, we
use Remark 8 and the rest of the proof is identical.

�

3. Restriction bounds for Dirichlet data: Proof of Theorem 2

As an application of Theorem 1, we now prove the restriction bounds along to-
tally geodesic boundary components up to corners in Theorem 2. A key technical
component in the proof of Theorem 2 involves estimating near-glancing mass based
on potential layer theory for the boundary data outside of hδ neignbourhoods of the
corners. To estimate restriction in hδ neighbourhoods of the corners, we then use the
non-concentration result in Theorem 1 combined with Sobolev estimates. Before car-
rying out the details, we briefly review some of the salient facts needed here and refer
the reader to [HZ] for further details.

3.1. Potential layers and the boundary jumps equation. Let Ω ⊂ R2 be a
piecewise-smooth, bounded convex planar domain. The free Green’s function for the
Helmholtz equation

(−∆− h−2)G(x, y, h) = δx(y), (x, y) ∈ R2 × R2

is given in terms of Hankel functions:

G(x, y, h) =
i

4
Ha

(1)
0 (h−1|x− y|).

The corresponding double layer operator N(h) : C0(∂Ω)→ C0(∂Ω) is given by

N(h)f(q) =

∫
∂Ω
N(q, q′, h) f(q′)dσ(q′),

N(q, q′, h) = 2∂ν(q)G(q, q′, h) =
i

4
h−1

〈
ν(q′),

q − q′

|q − q′|
〉
· Ha

(1)
1 (h−1|q − q′|), (53)

where,

Ha
(1)
1 (z) =

( 2

πz

)1/2 ei(z−3π/4)

Γ(3/2)

∫ ∞
0

e−ss1/2(1− s

2iz
)1/2 ds. (54)

Here, and throughout the paper, ν(q) denotes the unit boundary external normal

at q ∈ ∂̊Ω = ∂Ω \ C.
We recall that the boundary jumps equation says that

uh(q) = N(h)uh(q); q ∈ ∂Ω (55)

where N(h) is the double layer operator in (53).
Let

S := C ∪ S∗∂̊Ω,
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where the C = ∪Nm=1{cm} is the set of corner points and S∗∂̊Ω is the glancing set of
the interior of the boundary faces. We will sometimes refer to S simply as the singular
set and let U denote a neighbourhood of

Ξ := (β−1(B̊∗∂Ω))c × S ∪ S × (β−1
− (B̊∗∂Ω))c,

where β− : B̊∗∂Ω→ B∗∂Ω is the backwards billiard map.
We recall ([HZ] Prop. 4.2) the following h-microlocal decomposition of the double

layer operator:

N(h) = Nβ(h) +N∆(h) +NS(h), (56)

where N∆(h) ∈ Ψ−1
h (∂Ω), a boundary h-pseudodifferential operator of order −1 (see

section 5.1 for a precise definition) and WF ′hNS(h) ⊂ U. For our purposes, the most

important part of the double layer is Nβ(h) ∈ I0
h(∂̊Ω; Λβ), a zeroth-order h-Fourier

integral operator (h-FIO) with canonical relation

Λβ = {(q, ξ, q′, ξ′) ∈ B∗∂̊Ω
+ ×B∗∂̊Ω

+
; (q′, ξ′) = β(q, ξ)},

where β : B∗∂̊Ω
+ → B∗∂̊Ω

+
is the standard billiard map.

With (q, ξ) ∈ B∗∂̊Ω
+

and (q′, ξ′) = β(q, ξ), the operator Nβ(h) has principal symbol
(see [HZ] Prop. 6.1)

σ(Nβ)(ζ, β(ζ)) = −i
(1− |ξ|2q)1/4

(1− |ξ′|2q′)1/4
|dqdξ|1/2, ζ = (q, ξ) ∈ B∗∂̊Ω

+
. (57)

Since Λβ ⊂ T ∗∂Ω× T ∗∂Ω is a canonical graph, it follows by the h-Egorov theorem
([Zw] section 11.1) that

N∗β Nβ ∈ Ψ0
h(∂Ω), σ(N∗β Nβ)(q, ξ) =

(1− |ξ|2q)1/2

(1− |ξ′|2q′)1/2
. (58)

In the following, we make the additional assumption that Ω has a boundary decom-
position

∂Ω = Γj ∪k 6=j Γk,

where Γj is a flat boundary edge and the {Γk}k 6=j are the remaining (possibly curved)
boundary edges. We will follow the convention that Γj−1 and Γj+1 are the edges
adjacent to Γj sharing corner points cj and cj+1 respectively with Γj .

In this case, the analysis of the operator N(h) simplifies substantially due to the
fact that along the flat edge Γj , the Schwartz kernel

N(h)(q, q′) ≡ 0; (q′, q) ∈ Γ̊j × Γ̊j , j = 1, ..., N. (59)

Indeed, (59) follows immediately from (53) and the fact that〈
ν(q′),

q − q′

|q − q′|
〉
≡ 0, (q, q′) ∈ Γ̊j × Γ̊j .
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3.1.1. h-FIO part of the potential layer. It follows from the integral formula (54) for
the Hankel function that the h-FIO part of the potential layer N(h) has Schwartz
kernel of the form

Nβ(q, q′) = (2πh)−1/2ei|q−q
′|/hc(q, q′, h), (60)

where c(q, q′, h) ∼
∑∞

j=0 cj(q, q
′)hj , cj ∈ C∞(∂̊Ω× ∂̊Ω) when |q − q′| ' hδ, δ ∈ [0, 1).

To derive (60), one observes that the function b ∈ C∞(R) given by

b(x) :=

∫ ∞
0

e−ττ1/2 (1− τ

2i
x−1)1/2 dτ. (61)

has standard conormal asymptotic expansion as x→∞. Indeed, by Taylor expansion
of the integrand in (61), it follows that

b(x) ∼
∞∑
j=0

bjx
−j as x→∞.

Consider the piecewise-smooth function

a(q, q′) := |q − q′|−1/2 〈ν(q′),
q − q′

|q − q′|
〉 = O(|q − q′|)−1/2 (62)

uniformly for (q, q′) ∈ ∂Ω. In this case, the factor 〈ν(q′), q−q
′

|q−q′|〉 = O(1) and no better

since the boundary normal jumps at corners. Then, the WKB expansion (60) for the
Schwartz kernel Nβ(h)(q, q′) follows from (61) and (54). Moreover, it follows that one
can write Nβ(h)(q, q′) somewhat more succinctly in the form

Nβ(h)(q, q′) = (2πh)−1/2ei|q−q
′|/h a(q, q′) b(h−1|q − q′|). (63)

Since in (61), |1 − τ
2ix
−1| ≥ 1 where x = |q − q′|/h, by differentiation under the

integral sign and using the estimates

|∂βq,q′x| = Oβ(x |q − q′|−|β|),

it follows that for (q, q′) ∈ ∂̊Ω× ∂̊Ω

∂αq,q′a(q, q′) = Oα(|q − q′|−1/2−|α|); |q − q′| / 1, (64)

∂βq,q′b(h
−1|q − q′|) = Oβ(1)∂βq,q′(x

−1) = Oβ(|q − q′|−|β|); 1 / h−1|q − q′| / h−1.

Moreover, the derivative estimates in (64) are uniform for (q, q′) ∈ ∂̊Ω× ∂̊Ω.
We note for future reference that from the Leibniz formula and the derivative es-

timates (64) it follows that the symbol c(q, q′, h) in (60) can be written in product
form

c(q, q′, h) := a(q, q′) · b(h−1(|q − q′)),
where

|q − q′|1/2 ∂αq,q′c(q, q′, h) = Oα(|q − q′|−|α|), 1 / h−1|q − q′| / h−1. (65)



36 H. CHRISTIANSON AND J. TOTH

From (65), it follows that

hδ/2∂αq,q′c(q, q
′, h) = Oα(h−δ|α|); |q − q′| ' hδ, 0 ≤ δ < 1,

and so,

hδ/2c ∈ S0
δ (1).

The formula in (63) together with the symbolic estimates in (65) will be used in the
next section.

4. h-microlocalized jumps formula: estimates near glancing

We introduce several cutoff functions at this point. As above, let Γj be a flat
boundary edge with corner endpoints cj and cj+1. More generally, we order all egdes
Γk : k = 1, .., N − 1 in a counterclockwise fashion and let ck (resp. ck+1) be the
corner endpoints of Γk adjacent to the edges Γk−1 (resp. Γk+1). Throughout the
paper, q : [0, L] → ∂Ω will denote the piecewise C∞ arclength parametrization of the
boundary.

Let χ ∈ C∞0 (R2), 0 ≤ χ ≤ 1, be a radial cutoff with χ(x) = 1 for |x| ≤ 1 and
χ(x) = 0 for |x| ≥ 2. Fix a constant C0 = 1

2 minj |Γj |, and consider the corresponding
boundary corner cutoffs ψk : ∂Ω→ [0, 1] with

ψk(y) := χ(C−1
0 (q(y)− ck)). (66)

Similarily, the corresponding small-scale boundary corner cutoffs on scales hδ will
be denoted by ψδk : ∂Ω→ [0, 1], where

ψδk(y;h) := χ(C0 h
−δ(q(y)− ck)). (67)

It will also be useful to introduce notation for the sum of all corner cutoffs and so,
we introduce the cutoffs

ψ(y) :=
N∑
k=1

ψk(y), ψδ(y, h) :=

N∑
k=1

ψδk(y, h). (68)

Thus, ψδk : ∂Ω → [0, 1] is a standard cutoff supported in an hδ-neighbourhood of

the corner point ck and so, (1− ψδk) is supported outside an hδ-neighbourhood of the
corner point ck.

We continue to assume in the following that 0 ≤ 2δ < 1. Then, by Taylor expansion
of the integral formula for the Green’s function in (61) it follows that

sup
{(q,q′);|q−q′|'h2δ}

∣∣N(q, q′, h)− ei|q−q′|/ha(q, q′)b(h−1|q − q′|)
∣∣ = O(h∞). (69)

In (69), b and a are defined in (61) and (62) respectively and are, in particular,
piecewise-smooth on the off-diagonal set {(q, q′) ∈ ∂Ω × ∂Ω, |q − q′| ' h2δ} up to
corner points in q and q′.
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As a special case, it follows from (69) that with the corner cutoffs in (67) and for
all edge indices k, ` ∈ {1, ..., N},

sup
(q,q′)∈∂Ω×∂Ω

∣∣(1− ψδk)(q, h)
(
N(q, q′, h)− ei|q−q′|/ha(q, q′)b(h−1|q − q′|)

)
ψ2δ
` (q′, h)

∣∣
= O(h∞), (70)

and similarily, when ` 6= k,

sup
(q,q′)∈Γ`×Γk

∣∣(1− ψδk)(q, h)
(
N(q, q′, h)− ei|q−q′|/ha(q, q′)b(h−1|q − q′|)

)
(1− ψ2δ

` (q′, h)
∣∣

= O(h∞). (71)

We will use (70) and (71) in the next section where we h-microlocalize the jumps
equation (55) near the glancing set S∗Γj . Before doing this, we introduce some fre-

quency cutoffs to the glancing set S∗∂̊Ω : Specifically, for arbitarily small but fixed
ε0 > 0, let χj ∈ C∞0 (T ∗Γ̊j) with 0 ≤ χj ≤ 1 and such that χj(ξ) = 1 when
1 − ε0 ≤ |ξ| ≤ 1 + ε0 and χj(ξ) = 0 provided |1 − |ξ|| ≥ 2ε0. The corresponsding

h-pseudodifferential cutoffs are χj(h) := Oph(χj) ∈ Ψ0
h(Γ̊j).

Note that since Ω is convex with non-trivial corners, given (q, ξ) ∈ suppχj ⊂ B∗Γj
the ray with basepoint q ∈ Γj and (co)-vector ξ intersects the adjacent side Γk
transversally. In addition, the ray intersects Γk at a distance / ε0 to the corner
ck, k = j− 1, j+ 1. More precisely, there exists a constant C2 = C2(αj) > 0 depending
only on the angle αj such that with

(q′, ξ′) = β(q, ξ), (q, ξ) ∈ suppχj ,

and for ε0 > 0 sufficiently small,

||ξ′|q′ − 1| ≥ C2 and |q′ − cj | ≤ C1ε0 |q − cj | provided ||ξ|q − 1| ≤ ε0. (72)

Note that in (72), the basepoint q ∈ Γj and so, q′ ∈ Γk where k = j− 1 or k = j+ 1
provided ε0 is chosen sufficiently small.

4.1. Proof of Theorem 2: The obtuse case.

Proof. In the following, when convenient, we will freely use the notation ujh := uh1Γj ,
for eigenfunction boundary traces along Γj . To simplify the analysis slightly, we assume
in this section that the flat edge Γj intersects adjacent sides at obtuse angles αj > π/2.
We observe that in such a case, near glancing rays to the flat edge Γj intersect an
adjacent side Γk, k = j − 1, j + 1, transversally and, after an additional reflection,
under the admissiblity assumption in Definition 1 on the interior angles, intersects
the boundary ∂Ω transversally and away from corners (see Figure 4). This is a key
observation in our analysis below. We first give the proof of Theorem 2 in the case
where all angles at corners cj and cj+1 adjacent to the flat side Γj are obtuse (this
assumption allows for a technically somewhat simpler argument). Finally, we indicate
the fairly minor changes necessary for the proof in the general case in subsection 4.4.
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Γ`

Γk

Γj

cj

α

ε0

Lj

Figure 4. The setup for obtuse angles.

In the following, we fix δ ∈ (0, 1/2). We will eventually estimate the near corner
mass ‖ψδjuh‖L2(Γj) separately using the non-concentration estimate in Theorem 1. To

estimate ‖(1−ψδj )uh‖L2(Γj), in view of (55) and (59), one can write with uj,kh = 1Γj,kuh,

(1− ψδj (h))ujh =
∑
k 6=j

(1− ψδj )1ΓjN(h)ukh. (73)

Next, an application of the frequency cutoff operator χj(hD) : C∞(Γ̊j) → C∞(Γ̊j)
to both sides of (73) gives

χj(hD)(1− ψδj (h))ujh =
∑
k 6=j

χj(hD) (1− ψδj (h))1ΓjN(h)ukh +O(h∞). (74)

As for the non-glancing mass, the small-scale Rellich commutator result in Lemma
5 shows that

‖[1− χj(hD)] (1− ψδj (h))ujh‖L2(Γj) = O(h−δ/2) = O(h−1/4−0). (75)

Since Γj is assumed to be flat, we note that here χj(hD) is a tangential h-psdo
(see Definition 5.1) acting on the boundary components and consequently, the symbol

χj(ξ) depends only on frequency coordinates in T ∗Γ̊j .

The next step is to insert the small-scale corner cutoffs ψ2δ
k (h) in (67) on the RHS

of (74). This gives

χj(hD)(1− ψδj (h))ujh = NGj (h)uh + NDj uh +O(h∞). (76)
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where,

NGj (h) :=
∑
k 6=j

χj(hD) (1− ψδj (h))1ΓjN(h) (1− ψ2δ
k (h))1Γk ,

NDj (h) :=
∑
k 6=j

χj(hD) (1− ψδj (h))1ΓjN(h)ψ2δ
k (h)1Γk . (77)

In the following, refer to NGj (h) as the geometric part of the potential layer and

NDj (h) as the diffractive part. Consistent with this terminology, we can write

NG,Dj (h) :=
∑
k 6=j

NG,Djk (h),

where we will refer to NGjk (resp. NDjk) as the geometric (resp. diffractive) transfer
operators.

Remark 9. We note that from (70) and (71) it follows that, modulo O(h∞)-error,
one can replace N(q, q′, h) with its WKB expansion in (63) in both the geometric (resp.

diffractive) operators NGj (resp. NDj ) in (76). It then follows that the geometric part

NGj (h) : C∞(∂̊Ω)→ C∞(Γ̊j) is an h-FIO of order zero with a small-scale symbol in h.

4.1.1. Bounds for the geometric operators. In this section, we estimate the geometric
term ‖NGj uh‖L2(Γj) by analyzing the geometric transfer operatorsNGjk, k 6= j appearing

the in the decomposition (76) in more detail. We begin with the following

Lemma 3. For sufficiently small choice of ε0 > 0 in the frequency cutoff χj(ξ) along
Γj , there exist uniform constants C1 > 0 and C2 > 0 depending only on the domain Ω
such that when k ∈ {j − 1, j + 1},

WF ′h(NGjk(h)) ⊂
{

(y, ξ; y′ξ′) ∈ B∗Γ̊j ×B∗Γ̊k; |q(y)− cj | ≥ C1h
δ,

|q(y′)− cj | ≤ C2ε0 |q(y)− cj |, ||ξ′|y′ − cos(π − αk)| ≤ C3ε0, |y − ck| ≤ C2ε0
}
.

(78)

Moreover, when k /∈ {j − 1, j + 1},

WF ′hN
G
jk(h) = ∅.

Proof. First, note that for the geometric transfer operators NGjk, in view of the corner

cutoffs (1 − ψδ) and (1 − ψ2δ) appearing in the definition in (77), it follows that the
Schwartz kernel

suppS.K.NGjk ⊂ {(q, q
′) ∈ Γ̊j × Γ̊k; |q − q′| ' hδ}; k 6= j,

so that, modulo OC∞(h∞)-errors, one can use the WKB type formula in (63) for
N(q, q′, h). Let [0, `j ] 3 s → q(s) with `j = |Γj | be arclength parametrization of Γj
and [0, `k] 3 t→ q(t) be arclength parametrization of a boundary edge Γk with k 6= j.
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Then, in terms of these parametrizations the geometric transfer operator NGjk(h) =

χj(hD)(1− ψδj )1ΓjN(h)(1− ψ2δ
k )1Γk has Schwartz kernel of the form

(2πh)−3/2

∫ ∫
ei[(s−s

′)ξ+|q(s′)−q(t)|]/hχj(ξ)(1− ψδj )(s, h)c(s′, t, h)(1− ψ2δ
k )(t, h) ds′ dξ.

(79)

An application of stationary phase in (79) in the (s′, ξ)-variable gives

NGjk(s, t, h) = (2πh)−1/2ei|q(s)−q(t)|/h(1−ψδj )(s, h)c̃(s, t, h)(1−ψ2δ
k )(t, h)+O(h∞), (80)

where (see (65)),

|q(s)− q(t)|1/2c̃(s, t, h) ∈ S0
δ (1),

|q(s)− q(t)|1/2c̃(s, t, h) ∼
∞∑
m=0

cm

( h

|q(s)− q(t)|

)m
,

and with ρ(s, t) = q(s)−q(t)
|q(s)−q(t)| ,

c̃(s, t, h)− c(s, t, h)χj(ρ(s, t)) ∈ hS0(1),

supp c̃ ⊂ {(s, t);
〈
ρ(s, t), dsq(s)

〉
= 1 +O(ε0)}.

Note that stationary phase in (s′, ξ) does not involve differentiation of the small-
scale cutoffs (1−ψδj ) and (1−ψ2δ

k ), so there are no additional powers of h−δ appearing

in (80). We note that the support condition
〈
ρ(s, t), q′(s)

〉
= 1 + O(ε0) above on c̃

implies by convexity of Ω that

(t, s) ∈ supp c̃ =⇒ |q(t)− ck| = O(ε0)|q(s)− ck|, k = j − 1, j + 1.

In particular, modulo O(h∞) error it is enough to take k = j−1, j+1 in the sum (77).

Next, let χtrk ∈ C∞0 (B̊∗Γk) along an adjacent side. Then, in view of (80),

NGjk(h)χtrk (t, hDt)(s, t
′)

= (2πh)−3/2

∫ ∫
ei[|q(s)−q(t)|+(t−t′)η]/hc̃(s, t, h)(1− ψ2δ

k )(t, h)χtrk (t, η) dtdη

+O(h∞). (81)

We apply stationary phase in (81) in the (t, η)-variables. Since there is a 2-microlocal
cutoff (1 − ψ2δ

k )(t, h) that gets differentiated in the process, one must take some ad-
ditional care at this point. The formal expansion of the RHS in (81) is then of the
form

(2πh)−1/2ei|q(s)−q(t
′)|/h

( ∞∑
m=0

(hDtDη)
m

m!
[c̃(s, t, h)(1−ψ2δ

k )(t, h)χtrk (t, η)]|t=t′,η=〈ρ(t′,s),dt′ 〉

)
(82)
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We note that at most m derivatives in t hit the cutoff (1−ψ2δ
k ) and each Dt derivative

creates a factor of h−2δ, so that the error term in (82) at level m is O(h(1−2δ)m) and
it is then standard to show that the asymptotic expansion is indeed legitimate (see
subsection 4.1.2 for a closely-related argument). It follows that

η = 〈ρ(t′, s), dt′q(t
′)〉, 〈ρ(t′, s), dsq(s)〉 = 1 +O(ε0). (83)

Since the edges Γj and Γk intersect at angle αk, (83) implies that

η = cos(π − αk) +O(ε0),

and that completes the proof of the lemma.
�

As a consequence of Lemma 3, by choosing ε0 > 0 sufficiently small in the support of
the frequency cutoff χj(ξ

′), it is natural to introduce a corresponding frequency cutoff
χtrk ∈ C∞(B∗Γk) supported transversally along the edge Γk. Specifically we choose
χtrk ∈ C∞(B∗Γk) such that

suppχtrk ⊂ {(q′, η) ∈ B∗Γ̊k; |η| = cos(π − αk) +O(ε0)}.

In addition, let χε0 ∈ C∞0 (R) be a cutoff with 0 ≤ χε0 ≤ 1 and χε0(u) = 1 for
|u| ≤ ε0 with χε0(u) = 0 for |u| ≥ 2ε0. Next, setting

χtrk,q(q
′, η) := χtrk (q′, η) χε0

( |q′ − ck|
|q − ck|

)
, (84)

we have, in view of Lemma 3,

NGj (h)uh =

j+1∑
k=j−1

χj(q, hD) (1− ψδj (q, h))1ΓjN(h)χtrk,q(q
′, η) (1− ψ2δ

k (q′, h)1Γkuh

+O(h∞). (85)

At this point, it is useful to introduce some additional transfer operators that are
closely related to NGjk and NDjk (see (77). Let Njk(h) : C0(Γj)→ C0(Γk) be the transfer

operator with Schwartz kernel

Njk(q, q
′, h) := χj(q, hD)(1− ψδj )(q, h)N(q, q′, h); (q, q′) ∈ Γj × Γk. (86)

We note that since the cutoff ψ2δ
k (t) in the incoming t-variables is unaffected by

differentiation in the (s′, ξ)-variables in the stationary phase argument in (79), it follows
that when (q, q′) ∈ Γj × Γk,

Njk(q, q
′, h) = χj(q, hD)(1− ψδj )(q, h)N(q, q′, h)χε0

( |q′ − ck|
|q − ck|

)
+O(h∞). (87)



42 H. CHRISTIANSON AND J. TOTH

The point behind (87) is that near-glancing rays to Γj intersect adjacent sides Γk only
and do so transversally with |q′ − ci| / ε0|q − ck|. However, since Njk(h) incorporates
both diffractive and geometric terms, the transversal cutoff χtrk (q′, hD); k = j−1, j+ 1

cannot be added in (87) in contrast with the geometric transfer operators NGjk(h) in
Lemma 3.

In summary, we collect here for future reference the simple relation between the
various transfer operators:

NGjk(h) = Njk(h)χtrk (q′, hD)(1− ψ2δ
k )(h), (88)

NDjk(h) = Njk(h)ψ2δ
k (h).

Remark 10. Note that in (85), the sum on the RHS is only over the sides Γk; k =
j − 1, j + 1 adjacent to the flat side Γj and χtrk (q′, η) in (84) a uniformly transversal
frequency cutoffs along an adjacent side Γk with supp χtrk ⊂ {(q′, η) ∈ B∗0(Γk); |η −
cos(π − αk)| = O(ε0)} and cos(π − αk) + O(ε0) < 1 for ε0 > 0 small enough. The
heuristics here are quite simple: the formula in (85) is a consequence of the fact that,
due to the convexity of Ω, the ray corresponding to ξ ∈ suppχj sufficiently close to
glancing along Γj (i.e. with ε0 > 0 sufficiently small), necessarily hits only the sides
Γk; k = j − 1, j + 1 adjacent to the flat side Γj . Moreover, all such near-glancing rays
to Γj hit the adjacent sides Γj−1 and Γj+1 at a distance / ε0 to a common corner and
reflect in a (uniformly in ε0) transversal direction to the adjacent side roughly at angle
π − αk when ε0 > 0 is small (see Figure 4).

To summarize, from (76) and (85) we have shown that

(1− ψδj )χj(hD)uj

=

j+1∑
k=j−1

χj(q, hD) (1− ψδj (q, h))1ΓjN(h)χtrk (q′, hD)) (1− ψ2δ
k (q′, h)1Γkuh

+NDj (h)uj +O(h∞). (89)

Then, by choosing another transveral cutoff ζk ∈ C∞0 (B̊∗Γk) with ζk c χtrk , and so
that supp ζk ⊂ {(q, η) ∈ B∗0Γk; |η−cos(π−αk)| = O(ε0)}, the microlocal decomposition
in (89) can be written in terms of the transfer operators Njk in (87) as follows:
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(1− ψδj )χj(hD)uj

=

j+1∑
k=j−1

NGjk(h) 1Γkuh +NDj (h)uj +O(h∞)

=

j+1∑
k=j−1

Njk(h) ζk(q
′, hD)(1− ψ2δ

k (q′, h))1Γkuh +NDj (h)uj +O(h∞). (90)

Remark 11. Setting δ = 1/2− 0 in (90), our aim here is to show that

‖(1− ψδj (h))χj(hD)ujh‖L2(Γj) = O(h−δ/2) = O(h−1/4−0). (91)

When ρ ∈ C∞(Γ̊k) is supported away from corners, a standard Rellich commu-
tator argument (see Lemma 5) shows that with a transversal frequency cutoff ζk ∈
C∞0 (B̊∗Γk), one has ‖ρ(y)ζk(hDy)‖L2(Γk) = O(1). Unfortunately, since (1 − ψ̃2δ

k (h) is

only supported outside an h2δ-neighbourhood of a corner, at present, we cannot rule
out blowup in h; indeed, from Lemma 5, at present the best bound we can get near
corners is of the form ‖(1 − ψ2δ

k )ζk(hDy)uh‖L2(Γk) = O(h−δ/2) = O(h−1/4−0). Unfor-
tunately, as we show in section 4.2 the transfer operators Njk(h) are singular h-FIO’s
associated with one-sided folds and with small-scale (in h) symbols. As a result, they

are not bounded in L2. We show in section 4.2 that ‖Njk(h)‖L2→L2 = O(h−1/4−0).
Consequently, the naive estimate for the geometric term in (90) is

‖NGj (h)uh‖L2(Γj ) = O(1)‖Njk(h)‖L2→L2 ‖ζk(q′, hD)(1− ψ2δ
k (q′, h))1Γkuh‖L2(Γk)

= O(h−1/2−0).

This is just the Sobolev bound and is too crude to be useful.
To deal with this problem, we use the jumps equation uh = N(h)uh in the geometric

term on the RHS of (90) yet again to reflect near-glancing rays to Γj hitting Γk away
from the corners along the adjacent edge Γk (see Figure 4). The point is that by
choosing ε0 > 0 sufficiently small, under the admissibility assumption on the corner
angles, these reflected rays have the property that they next intersect the boundary ∂Ω
transversally in the interior of the boundary away from a fixed (in h) neighbourhood
of the corners. The latter (transversal) L2 mass is then shown to be O(1) by Lemma
5. We now carry out the details of this additional step.

Inserting the jumps equation u∂Ω
h = N(h)u∂Ω

h yet again in the first (geometric) term
on the RHS of (90) gives

χj(hD)(1− ψδj (h))ujh =
∑

k=j−1,j+1

NGjk(h)ukh +NDj (h)u∂Ω
h +O(h∞)

=

j+1∑
k=j−1

NGjk(h)N(h) u∂Ω
h +O(‖NDj (h)u∂Ω

h ‖L2) +O(h∞). (92)
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The diffractive term ‖NDj uj‖ is easier to estimate, so we defer this to section 4.2.1.
We first address the problem of bounding the geometric term. As we have already
indicated earlier, the main point behind using the jumps equation N(h)uh = uh yet
again in (92) is that near-glancing rays to the flat edge Γj intersect near corners

(and Rellich estimates in hδ-nbds of corners are quite delicate). To avoid this issue,
by inserting the jumps equation yet again (and using admissibility assumption), one
essentially reflects away these rays to the interior of the boundary ∂Ω far from any
corners. The latter can then estimated by the standard Rellich argument in Lemma 5
(see also Figure 4).

Next, we split up the RHS of (92) by inserting additional cutoffs ψ̃2δ(h) in (92)

where ψ̃2δ =
∑

k ψ̃
2δ
k with ψ̃2δ

k b ψ2δ
k is supported in the union of h2δ/2-radius balls

centered at each of the corners and ζ̃ ∈ C∞(B̊∗Γk) with ζ̃k c ζk. We continue to choose

this frequency cutoff so that supp ζ̃k ⊂ {(q, η) ∈ B∗0Γk; |η − cos(π − αk)| = O(ε0)}.
At this point, the admissibility assumption in Defintion 1 will play a crucial role to
ensure that rays reflected in the adjacent edge Γk intersect ∂Ω away from corners.

From (92), we can write

‖χj(hD)(1− ψδj (h))uh‖L2(Γj)

≤
j+1∑

k=j−1

‖NGjk(h)‖L2→L2

(
‖ζ̃k(hD) (1− ψ̃2δ

k (h)) 1Γk N(h) (1− ψ̃2δ(h))uh‖L2(Γk)

+ ‖ζ̃k(hD) (1− ψ̃2δ
k (h)) 1Γk N(h) ψ̃2δ(h)uh‖L2(Γk)

)
+O(‖NDj (h)uh‖L2) +O(h∞). (93)

In (93) and below, we write ‖Njk(h)‖ := ‖Njk(h)‖L2→L2 We now estimate each of

the two geometric terms on the RHS of (93) separately and then bound ‖NDj (h)uh‖
separately in section 4.2.1.

To bound the terms on the RHS of (93) it is convenient to introduce some notation
at this point. We set

Q1(h) := ζk(hD) (1− ψ2δ
k (h))N(h)(1− ψ̃2δ(h)),

Q2(h) := ζk(hD) (1− ψ2δ
k (h))N(h)ψ̃2δ(h)). (94)

Next, we further decompose the operatorsQ1,2(h) into near-diagonal and off-diagonal
terms as follows: Let χM ∈ C∞0 (R2), 0 ≤ χ ≤ 1 with χM (x) = 1 when |x| < 1

M and

χM (x) = 0 for |x| ≥ 2
M . Here, we choose M > 0 large enough so that |q(y)− q(y′)| ≤

1
M h

2δ and (y, y′) /∈ suppψ2δ
k × supp ψ̃2δ implies that (q, q′) ∈ Γk×Γk (i.e. both points

lie along the same edge, Γk.) We then decompose the operators Q1,2(h) by writing

Qj(h) = Q
(1)
j (h) +Q

(2)
j (h); j = 1, 2,
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such that

Q
(j)
1 (h) = ζk(hD)N

(j)
1 (h), j = 1, 2,

where

N
(1)
1 (z, y′, h) =

[
(1− ψ2δ

k (h))N(h)(1− ψ̃2δ(h))
]
(z, y′) · χM (h−2δ(q(z)− q(y′))), (95)

N
(2)
1 (z, y′, h) =

[
(1− ψ2δ

k (h))N(h)(1− ψ̃2δ(h))
]
(z, y′) · (1− χM )(h−2δ(q(z)− q(y′))).

Similarly,

Q
(j)
2 (h) = ζk(hD)N

(j)
2 (h) : j = 1, 2,

where

N
(1)
2 (z, y′, h) =

[
(1− ψ2δ

k (h))N(h)ψ̃2δ(h)
]
(z, y′) · χM (h−2δ(q(z)− q(y′))),

N
(2)
2 (z, y′, h) =

[
(1− ψ2δ

k (h))N(h)ψ̃2δ(h)
]
(z, y′) · (1− χM )(h−2δ(q(z)− q(y′))). (96)

We note here that by choosing M � 1,

N
(1)
2 (z, y′, h) = 0 (97)

and so, without loss of generality it suffices to consider only the N
(2)
2 -term when

considering Q2(h).

4.1.2. Estimating ‖Q1(h)uh‖. Q
(2)
1 -term: We start with analysis of the Q

(2)
1 -term.

Since in this case, |q(z) − q(y′)| ' h2δ for (z, y′) ∈ suppQ
(2)
1 (·, ·), modulo OC∞(h∞)-

error, it follows from (63) and Lemma 3 that in terms of parametrizing coordinates

with q = q(z) ∈ Γk, q
′ = q(y′) ∈ ∂Ω, ρ(z, y′) = q(z)−q(y′)

|q(z)−q(y′)| , and with

Θ :=
{

(z, y′);
〈
dzq(z), ρ(z, y′)

〉
= cos(π−αk)+O(ε0), |q(z)−cj | = O(ε0)|q(y′)−ck|

}
,

(98)
We claim that for ε0 > 0 sufficiently small,

inf
{(q(z),q(y′))∈Γk×∂Ω; (z,y′)∈Θ}

|q(z)− q(y′)| ≥ C(ε0) > 0. (99)

To prove (99), we note that when we fix q(z) = ck, a corner point adjacent to the flat
side Γj , and q(y′) ∈ ∂Ω is the boundary intersection of a formally reflected tangential
ray along Γj , the estimate in (99) follows by convexity of Ω and the admissiblity
assumption (see also Figure 4). For ε0 > 0 small, (99) then follows for general (z, y′) ∈
Θ by continuity of the billiard map since we reflect near-glancing rays along Γj in the
adjacent side Γk near the corner.
Thus, with q(y) ∈ Γk, q(z) ∈ Γk and q(y′) ∈ ∂̊Ω, we have
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Q
(2)
1 (y, y′, h) (100)

= (2πh)−1/2−1

∫
R

∫
∂Ω
ei[(y−z)ξ

′+|q(z)−q(y′)|]/h ζk(y, ξ
′)χΘ(z, y′) c(z, y′;h)

× (1− ψ2δ
k )(z, h) (1− ψ̃2δ)(y′, h)

(
1− χM (h−2δ(|q(z)− q(y′|)

)
dz dξ′ +O(h∞).

In (100), the cutoff χΘ ∈ C∞(Γk × ∂Ω) with 0 ≤ χΘ ≤ 1 such that χΘ(z, y′) = 1 in
a Cε0-width tubular neighbourhood of the manifold Θ in (98) with C > 0 sufficiently
large and χΘ(z, y′) = 0 outside a 2Cε0-width tubular neighbourhood.

From now on, we choose the arclength parametrization of the boundary so that
|dyq(y)| = 1 for all y ∈ ∂̊Ω. Here, we recall from (65) that the symbol c in (100)

satisfies the estimates |q(z) − q(y′)|1/2∂αz,y′c(z, y′, h) = Oα(|q(z) − q(y′)|−|α|) and note
that for the phase function

φ(z; y, y′, ξ) := (y − z)ξ′ + |q(z)− q(y′)|, dzφ =
〈
dzq(z),

q(z)− q(y′)
|q(z)− q(y′)|

〉
− ξ′. (101)

Consequently, dzφ = 0 if and only if ξ′ = 〈dzq(z), q(z)−q(y
′)

|q(z)−q(y′)|〉 = 〈dzq(z), ρ(y′, z)〉.
It follows from (99) that with ε0 > 0 sufficiently small,

min
(y′,z)∈suppχΘ

|q(y′)− q(z)| ≥ C1 > 0. (102)

We also note that for ε0 > 0 sufficiently small and with C denoting the corner set,
under the admissibility assumption in Definitiion 1 and for ε0 > 0 sufficiently small,
we claim that there exist a constant C > 0 (uniform in ε0) such that for the cutoff χΘ

in (100), one also has

min
(z,y′)∈suppχΘ

dist (q(y′), C) ≥ C2 > 0. (103)

To prove (103), we note that since the billiard map β : B∗∂Ω→ B∗∂Ω is piecewise

C∞, in view of the admissibility assumption, it follows that π(β(z, ξ′)) ⊂ ∂̊Ω provided
|q(z)− cj | = O(ε0) and |ξ′− cos(π−αk)| = O(ε0) with ε0 > 0 sufficiently small. Thus,
(103) follows from the definition of Θ in (98) again, by choosing ε0 > 0 sufficiently
small, since dist( suppχΘ, Θ ) ≤ Cε0. Since dzφ = ξ′ − 〈dzq(z), ρ(y′, z)〉, in view of
(102) and (103) it then follows by repeated integrations by parts in z that,

Q
(2)
1 (y, y′, h) (104)

= (2πh)−1/2−1

∫
R

∫
∂Ω
ei[(y−z)ξ

′+|q(z)−q(y′)|]/h ζk(y, ξ
′)χΘ(z, y′) c(z, y′;h)

× (1− ψ2δ
k )(z, h) (1− ψ̃)(y′, h)

(
1− χM ((|q(z)− q(y′)|)

)
dz dξ′ +O(h∞).

The point here is that in view of (102) and (103), q(y′) ∈ int ∂Ω with dist (q(y′), C) '
1 and also |q(y′)− q(z)| ' 1. Thus, the small-scale cutoff

(1− ψ̃2δ)(y′, h)
(
1− χM (h−2δ(|q(z)− q(y′)|) )

)
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gets replaced with

(1− ψ̃)(y′, h)
(
1− χM (|q(z)− q(y′)|))

)
which is clearly in S0(1) (in fact, it is independent of h.).

It will be useful in the following to separate-out the standard S0(1)-part of the
amplitude in (104) and define

creg(z, y
′, h) := χΘ(z, y′) c(z, y′;h) (1− ψ̃)(y′, h)

(
1− χM ((|q(z)− q(y′)|)

)
(105)

where clearly creg ∈ S0(1). Thus, we simply rewrite (104) in the form

Q
(2)
1 (y, y′, h) = (2πh)−1/2−1

∫
R

∫
∂Ω
ei[(y−z)ξ

′+|q(z)−q(y′)|]/h ζk(y, ξ
′) creg(z, y

′;h)

× (1− ψ2δ
k )(z, h) dz dξ′ +O(h∞). (106)

In (106) we note that (hDz)
β(1 − ψ2δ)(z, h) = O(h|β|ε

′
) since 2δ = 1 − ε′ and also

(hDz)
βc(z, y′, h) = |q(z)−q(y′)|−1/2O(h|β||q(z)−q(y′)|−|β|) = O(h−1+ε′)O(h|β|ε

′
) since

|q(z) − q(y′)| ' h1−ε′ for (z, y′) in the support of the amplitude in the integral (106).
Thus, by Leibniz rule,

(hDz)
β
(

(1− ψ2δ)(z, h) creg(z, y
′, h)

)
= Oβ(h−1+ε′+|β|ε′).

We also note that by convexity, cosαk < 1, and so, for ε0 > 0 sufficiently small (but
independent of h), the transversality conditions

max( 〈ρ(z, y′), dy′q(y
′)〉, 〈ρ(z, y′), dzq(z)〉 ≤

1

C3(ε0)
< 1

also follows from (98) and convexity of Ω, where we recall that ρ(z, y′) = q(z)−q(y′)
|q(z)−q(y′)| .

To summarize, it follows that for ε0 > 0 sufficiently small, there exist constants
Cj > 0; j = 1, 2, 3, 4 uniform in ε0 such that the cutoff χΘ in (100) satisfies

supp χΘ ⊂ {(z, y′); max
(
〈ρ(z, y′), dy′q(y

′)〉, 〈ρ(z, y′), dzq(z)〉
)
≤ 1

C1
< 1,

|q(z)− cj | ≤ C2ε0, |q(z)− q(y′)| ≥ C3 > 0, dist(q(y′), C) ≥ C4 > 0}, (107)

where in (107) we recall that (q(z), q(y′) ∈ Γk × ∂̊Ω.

The next step is to apply stationary phase in (106) in (z, ξ′) taking into account the
support properties of χΘ (and consequently creg) in (107). Given the phase function

φ(z, ξ′; y, y′) := (y − z)ξ′ + |q(z)− q(y′)|,
the critical point equations are

dzφ = −ξ′ + 〈ρ(z, y′), dzq(z)〉 = 0 ⇐⇒ ξ′ = 〈ρ(z, y′), dzq(z)〉,
dξ′φ = y − z = 0 ⇐⇒ z = y.
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The only slight subtlety here is the presence of the corner cutoff 1 − ψ2δ
k ∈ S0

2δ(1)

which is supported outside an h2δ-neighbourhood of the corner ck. This cutoff is 2-
microlocal since 2δ = 1− 0 > 1/2. However, this term only depends on the z-variables
and so, in particular,

(hDzDξ′)
α
(

(1− ψ2δ)(z;h) creg(z, y
′, h)

)
= O(h(1−2δ)|α|). (108)

Since 2δ < 1, one can legitimately apply stationary phase in (106); indeed, setting
c̃(z, ξ′; y, y′, h) := χ(y, ξ′)χΘ(z, y′) creg(z, y

′;h) (1−ψ2δ
k )(z, h)ψ2δ(y′, h), the remainder

term of order N is

RN (y, y′, h) ≤ hN
∫ 1

0

(1− t)N

N
‖ ̂(DzDξ′)N c̃‖L1 dt ≤ CNhN‖ ̂(DzDξ′)N c̃‖L1

Thus, since c̃ ∈ C∞0 , it follows that

|RN (y, y′, h)| ≤ CNhN max
|α|≤2

‖Dα
z,ξ′ (DzDξ′)

N c̃‖L∞ = ON (h−2δN−4δ) (109)

The last estimate in (109) follows from Leibniz rule, (108) and the fact that at most
(N + 2) derivatives in z hit the singular symbol (1 − ψ2δ)(z, h). Thus, if follows from
(109) that by choosing N � 1 sufficiently large, one can apply stationary phase to the

O(h∞)-error in (106). The result is that the Schwartz kernel of Q
(2)
1 (h) can be written

in the form:

Q
(2)
1 (y, y′, h) = (2πh)−1/2ei|q(y)−q(y′)|h dsing(y;h) dreg(y, y

′, h) (1− ψ)(y′)

+O(h∞) (110)

where, (q(y), q(y′)) ∈ Γ̊k × ∂̊Ω, dreg ∈ S0(1). The symbol dsing is 2-microlocal with

∂αy,y′dsing(y, h) = O(h−2δ|α|).

Moreover, again in view of (107), the ray ρ(y, y′) = q(y)−q(y′)
|q(y)−q(y′)| is then transversal to

the boundary at both endpoints q(y) ∈ Γ̊k and q(y′) ∈ ∂̊Ω. Thus, there exists C0 > 1
with

supp dreg ⊂
{

(y, y′); (q(y), q(y′)) ∈ Γ̊k × ∂̊Ω,

max
(
|〈dy′q(y′), ρ(y, y′)〉|, |〈dyq(y), ρ(y, y′)〉|

)
≤ 1

C0
, |q(y)− q(y′)| ≥ C1

}
. (111)

Setting S(y, y′) := |q(y)− q(y′)|, it follows by direct computation that

∂y∂y′S(y, y′) =
1

|q(y)− q(y′)|
[
〈dyq(y), dy′q(y

′)− 〈dy′q(y′), ρ(y, y′)〉 ρ(y, y′)〉
]

=
1

|q(y)− q(y′)|
〈dyq(y), ρ⊥(y, y′)〉 · 〈dy′q(y′), ρ⊥(y, y′)〉, (112)

where ρ⊥ is unit vector orthogonal to ρ. Thus, from (111) and using the fact that
|ρ(y, y′)| = 1 and Ω is convex,
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|∂y∂y′S(y, y′)| ≥ C3 > 0, (y, y′) ∈ supp dreg. (113)

Thus, Q
(2)
1 (h) has a canonical relation that is a graph and so, by h-Egorov, P1(h) :=

Q
(2)
1 (h)∗Q

(2)
1 (h) : C∞(∂̊Ω)→ C∞(∂̊Ω) is an h-psdo. Indeed, from (110) and (113), by

a standard Kuranishi change of variables, it follows that the Schwartz kernel of the

h-psdo P1(h) := Q
(2)
1 (h)∗Q

(2)
1 (h) is modulo O(h∞) of the form

P1(y′, y′′, h) = (2πh)−1

∫
R
ei(y

′−y′′)η/h p1(y′, η;h) (1− ψ(y′))2 f(z(y′, η), h) dη, (114)

In (114), p1 ∈ S0(∂̊Ω) with supp p1 ⊂ {(y′, η) ∈ B∗∂̊Ω; |η|y′ ≤ 1/C1 < 1, |q(y′) −
C| ≥ C4 > 0} due the transversal support properties of d in (110). Also, we note that
again by taking ε0 > 0 small, the near glancing rays in the support of χj reflect off Γk
and intersect the interior of a single edge, say Γ`. Thus, in (114) we can assume that

(q(y), q(y′)) ∈ Γ̊` for some fixed ` ∈ {1, ..., N}.
Since

‖Q(2)
1 (h)uh‖2∂Ω = 〈P1(h)uh, uh〉Γ` +O(h∞), (115)

one is reduced to estimating the h-psdo matrix elements on the RHS of (115).
The second part of the symbol, f(z(y′, η), h), in (114) is somewhat more subtle since

it is in a suitable semiclassical 2-microlocal class. Here, z(y, η′) ∈ Γk where

z(y, η′) = πβ(y, η′), (y, η′) ∈ B∗0(Γ̊`).

To describe this symbol in more detail, consider the curve

H` := {(y′, η) ∈ B∗Γ`; z(y′, η) = 0, (y′, η) ∈ supp p1},
consisting of covectors in B∗Γ` which result from near-glancing rays to Γj reflecting
near the corner ck in the adjacent edge Γk and then hitting the interior of Γ`. The
fact that H` is C∞ follows by the implicit function theorem since ∂ηz(y

′, η) 6= 0 for
(y′, η) ∈ H` from (113).

Let Ψ0
H`,2δ

denotes the space of zeroth-order 2-microlocal h-psdos associated with

the hypersurface (i.e. curve) H` ⊂ B∗Γ′` as in ([CHT15] section 2). In the formula in
(114), one readily verifies that f ∈ S0

H`,2δ
(Γ`), so that

P1(h) ∈ Ψ0
H`,2δ

(Γ`).

Moreover, it is readily checked that

f(z(y′, η), h) = (1− ψ2δ
k )2(z(y′, η), h) +OS(h1−2δ).

To summarize, setting

fsing(y
′, η, h) := p1(y′, η;h) (1− ψ(y′))2 f(z(y′, η), h) ∈ S0

H`,2δ
(Γ`), (116)

we have shown that

P1(h) = Oph(fsing) +O(h∞)L2→L2 . (117)
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Moreover, recall that the symbol p1(y′, η) has transversal support away from corners

with supp p1 ⊂ {(y′, η) ∈ B∗∂̊Ω; |η|y′ ≤ 1/C3(ε0) < 1, |q(y′) − C| ≥ Cε0}. So, from
(116),

supp fsing ⊂ {(y′, η) ∈ B∗∂̊Ω; |η|y′ ≤ 1/C3(ε0) < 1, |q(y′)− C| ≥ Cε0}.

Then, we introduce an additional cutoff χreg ∈ C∞0 (B∗Γ`), 0 ≤ χreg ≤ 1, satisfying

(i):

suppχreg ⊂ {(y′, η) ∈ B∗∂̊Ω; |η|y′ ≤ 1/C̃3(ε0) < 1, |q(y′)− C| ≥ 2Cε0}; C̃3 < C3,
(118)

and
(ii):

χreg(y, η
′) = 1, (y, η′) ∈ supp fsing. (119)

Thus, from (ii), χreg fsing = fsing with χreg ∈ S0(1) in a standard symbol class
satisfying the transversal support conditions in (118). Then, by h-psdo calculus (see
[CHT15] subsection 2.2.2), since P1(h) = Oph(fsing), we have

〈P1(h)uh, uh〉Γ` = 〈P1(h)χreg(h)ũh, χreg(h)ũh〉Γ′` +O(h∞)

= O(1)‖χreg(h)uh‖2L2 ,

by L2-boundedness of P1(h) = Oph(bsing). Finally, since the symbol χreg is supported
transversally to the boundary edge Γ` and outside an h-independent neighbourhood
of the corners, by the Rellich result in Lemma 5,

‖χreg(h)uh‖∂Ω = O(1).

Consequently,

〈P1(h)uh, uh〉L2(Γ`) = O(1), (120)

and in view of (115),

‖Q(2)
1 (h)uh‖∂Ω = O(1). (121)

Q
(1)
1 -term. As for the near-diagonalQ

(1)
1 (h)-term, since |q(y)−q(y′)| / h2δ for (y, y′) ∈

supp Q
(1)
1 (·, ·), one cannot simply use the asymptotic formula for the kernel in (63).

Instead, we use the exact Hankel function formula (53) together with a Schur lemma
argument to control this term. By L2-boundedness,

‖Q(1)
1 (h)uh‖L2 = ‖ζk(hD)N

(1)
1 (h)uh‖L2 = O(1)‖N (1)

1 (h)uh‖L2 (122)

and so, it suffices to bound ‖N (1)
1 (h)uh‖L2 from above.

From the explicit formulas (53) and (54) it follows that for (q, q′) ∈ Γ̊k × Γ̊k,

h−1|〈νq, ρ(q, q′)〉| = O(|q − q′|h−1). (123)
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Note that in (123) both q and q′ are constrained to the same boundary edge Γk, so
there is no jump in the boundary normal resulting in the improved estimate in (123).
From the explicit formulas (54), (53) and (123), by setting z = |q− q′|/h, we have (see

(95) for definition of N
(1)
1 ),

|N (1)
1 (q, q′;h)| ≤ Cz1/2

∣∣∣ ∫ ∞
0

e−ss1/2(1− s

2iz
)1/2ds

∣∣∣ · χM (h−2δ(q − q′))

≤ C
(∫ ∞

0
e−ss1/2(s+ 2z)1/2 ds

)
χM (h−2δ(q − q′))

≤ C ′
(
1 + h−1/2|q − q′|1/2

)
χM (h−2δ(q − q′)) / h−0χM (h−2δ(q − q′)). (124)

Here, the last line follows since 2δ = 1 − 0. From (124) we get that by the Schur
lemma,

‖N (1)
1 (h)‖L2→L2 ≤ max

(∫
|q−q′|/h1−0

|N (1)
1 (q, q′, h)|dq,

∫
|q−q′|/h1−0

|N (1)
1 (q, q′, h)|dq′

)
= O(h1−0). (125)

Since by Sobolev restriction, ‖uh‖∂Ω = O(h−1/2), it follows from (125) and (122)
that

‖Q(1)
1 (h)uh‖∂Ω = O(h1/2−0). (126)

Thus, from (121) and (126),

‖Q1(h)uh‖L2(∂Ω) = O(1). (127)

4.1.3. Estimating ‖Q2(h)uh‖. We begin by recalling from (97) that the Schwartz kernel

N
(1)
2 (q, q′, h) = 0 and so, there is no Q

(1)
2 (h) term.

Q
(2)
2 -term: We claim this term is O(h∞) and is therefore residual. The argument is

a rather standard wave front computation using the fact that under the admissibility
assumption and for ε0 > 0 small, all reflected rays leaving Γk hit a boundary edge Γ`
in the interior and far from corners.

Let ψ̃ε0 =
∑

k ψ̃k,ε0 , where the ψ̃k,ε0 is a corner cutoff (independent of h) supported

in an ε0-neighbourhood of ck. Since |q − q′| ' h2δ, one can replace N
(2)
2 (h) with the

h-FIO piece, Nβ(h). The result is that

Q
(2)
2 (h) = ζk(hD) (1− ψ2δ

k (h))1ΓkNβ(h)ψ̃2δ(h) +OC∞(h∞)

= ζk(hD) (1− ψ2δ
k (h))1ΓkNβ(h)ψ̃ε0ψ̃2δ(h) +OC∞(h∞), (128)

where in the last line we have used that since ψ̃ε0 c ψ̃
2δ(h), clearly (1−ψ̃ε0)ψ̃2δ(h) ≡ 0.
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By h-psdo calculus, it then follows that with ζ̃k c ζk,

ζk(hD)(1− ψ2δ
k )(h))1ΓkNβ(h)ψ̃ε0ψ̃

2δ(h)

= ζk(hD)(1− ψ2δ
k )(h))ζ̃k(hD)1ΓkNβ(h)ψ̃ε0ψ̃

2δ(h) +O(h∞).

Then, by L2-boundedness,

‖ζk(hD)(1− ψ2δ
k )(h))ζ̃k(hD)1ΓkNβ(h)ψ̃ε0ψ̃2δ(h)uh‖Γk

= O(1) ‖ζ̃k(hD)1ΓkNβ(h)ψ̃ε0‖L2→L2 ‖ψ̃2δ(h)uh‖Γk . (129)

Then, by h-wavefront calculus,

WF ′h

(
ζ̃k(hD)1ΓkNβ(h)ψ̃ε0

)
⊂
{

(y,′ ξ′; y, ξ) ∈ B∗∂̊Ω×B∗Γk,

|q(y)− ck| ≤ ε0,
∑
`

|q(y′)− c`| ≤ ε0, (y′, ξ′) = β(y, ξ), |ξ − cos(π − αk)| ≤ C ′ε0
}
.(130)

By continuity of the billiard map β : B∗∂Ω → B∗∂Ω, under the admissibility as-
sumption in Defintion 1, it follows that for ε0 > 0 sufficiently small in (130), when
|q(y) − ck| < ε0, one has that min`=1,..,M |q(y′) − c`| > C0 > 0 for all corner indices `
in (130) and where C0 > 0 can be chosen independent of ε0 > 0. Consequently,

WF ′h

(
ζ̃k(y, hD)1ΓkNβ(h)ψ̃ε0

)
= ∅. (131)

Thus, from (128)-(131) it follows that

‖Q2(h)uh‖∂Ω = O(h∞). (132)

To summarize, in view of (132), (127) and (93), we have proved that

‖χj(hD)(1− ψδj (h))uh‖L2(Γj) /
j+1∑

k=j−1

‖NGjk(h)‖L2→L2

(
1 +O(‖ψ2δ

k (h)uk‖)
)

+‖NDj (h)uh‖L2(Γj) +O(h∞). (133)

From the non-concentration result in Theorem 1, for any corner ck ∈ C,

‖φh‖B(ck,h2δ) = O(hδ)

and by an application of Sobolev restriction, it follows that by setting δ = 1/2− 0,

‖ψ2δ
k (h)uk‖L2(Γk) = O(hδ−1/2) = O(h−0).

Then, from (133),
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‖χj(hD)(1− ψδj (h))uh‖L2(Γj)

/ h−0
j+1∑

k=j−1

‖NGjk(h)‖L2→L2 + ‖NDj (h)uh‖L2(Γj) +O(h∞). (134)

Recall, that given the transfer operator Njk(h) in (87), one can write (see (88)),

NGjk(h) = Njk(h)χtrk (q′, hD)(1− ψ2δ
k )(h), NDjk(h) = Njk(h)ψ2δ

k (h).

Since NDj (h) =
∑

k=j−1,j+1N
D
jk(h), in view of (134), one is reduced to bounding

‖Njk(h)‖L2→L2 for the transfer operator Njk(h) : C∞(Γ̊j)→ C∞(Γ̊k) in (86).

4.1.4. Estimating ‖Njk(h)‖L2→L2. Before deriving upper bounds for ‖Njk(h)‖L2→L2 ,
we review some background on h-Fourier integral operators with fold-type canonical
relations.

4.2. h-Fourier integral operators associated with one-sided folds. We consider
here the transfer operators Njk(h) : C0(Γj)→ C0(Γk); k = j − 1, j + 1 with Schwartz
kernel given in (86).

We briefly pause here to motivate the O(h−1/4−0)-bound in Theorem 2 by making
explicit the connection to the standard L2 → L2 bounds for h-Fourier integral operators
with canonical relations that are one-sided folds. The novelty here lies in the extension
of the estimates up to corners.

To begin, set S(s, t) := |q(s)− q(t)| and consider the singular set

Σ := {(q(s), q(t)) ∈ Γj × Γk; s ∈ supp (1− ψδj ); ∂s∂tS(s, t) = 0}. (135)

The set Σ is the singular locus of the Lagrangian parametrization

ι(s, t) = (q(s), ∂sS(s, t), q(t), ∂tS(s, t)) ∈ Λβ ∩ π−1(suppψδj ), (136)

in the sense that, by an application of the inverse function theorem, for (s, t) ∈ Σc,
ι|Σc is a canonical graph. Then, for arbitrarily small (but fixed) ε > 0 we let χΣ ∈
C∞0 (Γj ×Γk) be supported in an 2ε-width tubular neighbourhood of Σ with χΣ ≡ 1 in

an ε-width tubular neighbourhood. Let NΣ
jk(h) (resp. N1−Σ

jk (h)) be the operators with

Schwartz kernels χΣNjk(h) (resp. (1− χΣ)Njk(h).) Then, by the h-Egorov theorem,

N1−Σ
jk (h)∗N1−Σ

jk (h) ∈ Oph(S0
δ (Γ̊k)).

Thus, by L2-boundedness,

‖N1−Σ
jk (h)‖L2→L2 = O(1). (137)

A stationary phase argument as in subsection 4.1.2 shows that the transfer operator
Njk(h) : C∞(Γk)→ C∞(Γj) has a Schwartz kernel of the form

NΣ
jk(h)(s, t) = (2πh)−1/2eiS(s,t)/h (1−ψδj )(s;h) cχj (s, t, h)χΣ(s, t), (q(s), q(t)) ∈ Γj×Γk.

(138)
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Moreover, in (138), the symbol cχj (s, t, h) has the following properties:

(i):

|q(s)− q(t)|1/2 · cχj (s, t, h) ∈ S0
δ (1)

and
(ii):

supp cχj ⊂ {(s, t); |q(t)− cj | ≤ Cε0|q(s)− cj |,
〈dtq(t), ρ(s, t)〉 = cos(π − αk) +O(ε0) < 1〉}, (139)

where we continue to write ρ(s, t) = q(t)−q(s)
|q(t)−q(s)| . In view of (137), we have that

‖Njk(h)‖L2→L2 = ‖NΣ
jk(h)‖L2→L2 +O(1)

and one is consequently reduced to estimating ‖NΣ
jk(h)‖L2→L2 , with Schwartz kernel

NΣ
jk(h)(s, t) in (138).

Lemma 4. Let cj+1 = Γj ∩ Γj+1 be the corner adjacent to the boundary edges Γj
and Γj+1. Then, by choosing the glancing cutoff aperature ε0 > 0 sufficiently small,
it follows that there exist constants C1(ε0) > 0 and C2(ε0) > 0 such that for any
h ∈ (0, h0(ε0)] sufficiently small and (s, t) ∈ supp (cχj · χΣ),

C1(ε0)
|q(t)− cj | |q(s)− cj |
|q(s)− q(t)|3

≤ |∂s∂tS(s, t)| ≤ C2(ε0)
|q(t)− cj | |q(s)− cj |
|q(s)− q(t)|3

,

Proof. By an affine change of Euclidean coordinates, it suffices to assume that cj =
(1, 0) and

Γj = {(s, 0); s ∈ supp (1− ψδj )} ⊂ {(s, 0); 0 ≤ s ≤ 1− C1h
δ}.

Then,

Γj+1 = {(t, f(t)); t ∈ suppψk } = {(t, f(t)); 1 ≤ t ≤ 1 + C̃1ε0},
where with some α > 0, the profile function

f(t) = α(t− 1) +O(|t− 1|2), 1 ≤ t ≤ 1 + C̃1ε0.

In this case, the phase function is

S(s, t) = [(s− t)2 + f2(t)]1/2.

∂s∂tS(s, t) =
2α2(t− 1) [1− s+O(1− t)]

[(s− t)2 + α2(1− t)2]3/2
. (140)

Finally, by shrinking the glancing cutoff χj(hD) (i.e. taking ε0 > 0 sufficiently
small), one can assume that

|t− 1| ≤ Cε0|1− s|
and so,

1− s+O(1− t) ' 1− s
in (140). This completes the proof of the Lemma.



RESTRICTION BOUNDS FOR NEUMANN EIGENFUNCTIONS OF PLANAR DOMAINS 55

�

It will be useful in the following to use the parametrizations of Γj and Γk given in
the proof of Lemma 4. For future reference, we note that since |1− t| ≤ Cε0|1− s| for
(s, t) ∈ supp cχj , it follows that by choosing ε0 < 1 small, in terms of the parametrizing
coordinates in Lemma 4,

|q(s)− q(t)| ≈ |1− s|, (s, t) ∈ supp cχj , (141)

and so, by Lemma 4 it follows that

|∂s∂tS(s, t)| ≈ |1− t|
|1− s|2

, (s, t) ∈ supp cχj . (142)

In view of (142), since |1− s| ' hδ for s ∈ (1−ψδj ), in the following, it will be useful
to use the defining function

F (s, t) := t− 1

to dyadically decompose suppχΣ in order to estimate ‖NΣ
jk(h)‖L2→L2 .

Remark 12. From Lemma 4 it is immediate that the singular manifold

Σ = {(s, 1), s ∈ supp (1− ψδj )} ∼= S∗+(Γj ∩ supp (1− ψδj ))
which is just the (positive) glancing set along Γj . Repeating the computation in Lemma
4 with the corner cj adjacent to sides Γj and Γj−1, it follows that the singular manifold

in the latter case is Σ′ = {(s,−1); s ∈ suppψδj} ∼= S∗−(Γj ∩ supp (1 − ψδj ), so that the

union Σ ∪ Σ′ ∼= S∗(Γj ∩ suppψδj ), the entire glancing set along Γj ∩ suppψδj .

It also follows by a direct computation using (140) that

∂2
s∂tS(s, t = 1) = 0, ∂s∂

2
t S(s, t = 1) 6= 0, s ∈ supp (1− ψδj ).

Thus, the Lagrangian parametrization ι : supp (1−ψδj ) × supp ψ̃k → Λβ in (136) has
a one-sided fold singularity along the glancing set Σ. The subtlety here is the presence
of small-scale cutoffs in h which will create some additional terms resulting in log h-loss
in the usual bounds.

To estimate ‖NΣ
jk(h)∗ · NΣ

jk(h)‖L2→L2 we make the usual dyadic decomposition

around the singular hypersurface Σ (see [Ph]), but since there are small-scale (in h) non-
standard symbols involved we will need to keep track of these terms in the estimates.
In view of (138), the Schwartz kernel of P (h) := NΣ

jk(h)∗NΣ
jk(h) : C0(Γj)→ C0(Γj) is

of the form

P (t, t′, h) := (2πh)−1

∫
R
ei[S(s,t)−S(s,t′)]/hc̃(s, t, t′, h) ds, (143)

where (see (87)),

c̃χj (s, t, t
′, h) := cχj (s, t, h)cχj (s, t

′, h)χΣ(s, t)χΣ(s, t′) |(1− ψδj )(s, h)|2,
and the symbols cχj (s, t, h) and cχj (s, t

′, h) satisfy the bounds in (139)(i) with

|q(s)− q(t)|1/2 |q(s)− q(t′)|1/2c̃χj (s, t, t′, h) ∈ S0
δ (1). (144)
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They also satisfy the support condition in (139)(ii). Moreover, in view of these
support conditions, by choosing ε0 > 0 small, it suffices to assume that |t− t′| � 1 in
(143).

We apply a standard Kuranishi argument combined with a dyadic decomposition
of the frequency variables in (143). Let χ±m ∈ C∞0 (R; [0, 1]), m = 0, 1, 2, ... be a se-
quence of cutoffs with supp χ±m ⊂ [±2−m,±2−m+1] and

∑
m χ
±
m = 1. We make the

decomposition

P (t, t′, h) = (2πh)−1
∑
m

∫
ei[S(s,t)−S(s,t′)]/hc̃χj (s, t, t

′, h)χm(t−1)χm(t′−1) ds+O(h∞)

Setting

Pm(t, t′, h) := (2πh)−1

∫
ei[S(s,t)−S(s,t′)]/hc̃χj (s, t, t

′, h)χm(t− 1)χm(t′ − 1) ds, (145)

it then follows that ‖NΣ
jk(h)‖2L2→L2 = ‖P‖L2→L2 ≤

∑
m ‖Pm‖L2→L2 and so, one is

reduced to bounding the latter.
By Taylor expansion of the phase in (145),

S(s, t)− S(s, t′) = ∂tS(s, t∗(t, t′, s))(t− t′), t∗ − 1 ∈ suppχm,

we note that in view of the support of c̃ we have max(|t− 1|, |t′ − 1|) ≤ Cε0 � 1 and
so, by the corresponding Kuranishi change of variable s 7→ ∂t∂sS(s, t∗) = ξ,

Pm(t, t′, h) = (2πh)−1

∫
R
ei(t−t

′)ξ/h c̃(s, t, t′, h)
χm(t− 1)χm(t′ − 1)

|∂s∂tS(s, t∗)|
dξ

= (2πh)−1

∫
R
ei(t−t

′)ξ/h cm(s, t, t′, h) dξ,

cm(s, t, t′, h) := c̃(s, t, t′, h) · χm(t− 1)χm(t′ − 1)

∂s∂tS(s, t∗)
, (146)

where the last line in (146) follows from (141) and (142). In the integrand of (146) we
abuse notation slightly and write s = s(ξ, t, t′) and t∗ = t∗(s(ξ; t, t′), t, t′).

From (141), (142) and Lemma 4, ,

|cm(s, t, t′, h)| / |q(s)− q(t)|−1/2|q(s)− q(t′)|−1/2|q(s)− q(t∗)|3

×χm(t− 1)χm(t′ − 1)|q(t∗)− cj |−1 |q(s)− cj |−1,

We note here that q(t∗) lies between q(t) and q(t′) and so, t∗ − 1 ∈ suppχm. Then,
using (141) and (142),

|cm(s, t, t′, h)| / |s− 1|3 |s− 1|−2 |t∗ − 1|−1 χm(t∗ − 1) / 2m |s− 1| / 2m. (147)
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Similarily, provided the dyadic scale 2m / h−δ, δ = 1/2− 0, for the derivatives one
gets that

|∂αξ ∂
β
t,t′cm(s(ξ; t, t′), t, t′, h))| / Cα,β2mh−δ(|α|+|β|), when 2m / h−δ. (148)

An application of L2- boundedness for the h-psdo Pm ([Zw] section 4.5.1) then gives

‖Pm‖L2→L2 /
∑

α≤C(n)

h|α|/2 sup |∂αcm|

/ 2m
(
1 +

∑
1≤γ+γ′≤C(n)

hγ/22mγ hγ
′(1/2−δ))

/ 2m
(
1 +

∑
1≤γ≤C(n)

hγ/22mγ
)

(149)

since 0 ≤ δ < 1/2.
The first term on the RHS of (149) comes from differentiaion of the dyadic cutoff

term χm(t− 1)χm(t′ − 1)(t∗ − 1)−1 whereas the second term arises from differentiaion
of the symbol (t∗ − 1)c̃ ∈ S0

δ (1).
Thus, from the last line of (149),

‖NΣ
jk(h)‖L2→L2 = ‖Pm(h)‖1/2

L2→L2 / 2m/2; when 2m / h−δ. (150)

On the other hand, one can bound ‖Pm(h)‖L2→L2 directly using (145) and (141).
From (139) we have that

|cχj (s, t)| = O(|s− 1|−1/2),

and so, by the Schur lemma,

‖Pm(h)‖L2→L2 / h−1

∫ ∣∣∣ ∫ 1−hδ

0
cχj (s, t, h)cχj (s, t

′, h)χm(t− 1)χm(t′ − 1)ds
∣∣∣ dt

/ h−1

∫
R

( ∫ 1−hδ

0

ds

1− s

)
χm(t− 1)χm(t′ − 1)dt / h−12−m| log h|.(151)

Using (150), (151) and taking square roots, we get that

‖NΣ
jk(h)‖L2→L2 ≤

∑
m

min (2m/2, h−1/2| log h|1/22−m/2). (152)

We note that 2m/2h1/2| log h|−1/2 = 2−m/2 is equivalent to 2m = h−1/2| log h|1/2 so

that 2m/2 = h−1/4| log h|1/4. Thus, from (152) it follows that

‖Njk(h)‖L2→L2 = ‖NΣ
jk(h)‖L2→L2 +O(1)

= O(h−1/4| log h|1/4) +O(1) = O(h−1/4| log h|1/4). (153)
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To obtain (153) for the dyadic scales 2m/2 ≤ h−1/4| log h|1/4 we use the h-psdo

bound (150) in (152), whereas for 2m/2 > h−1/4| log h|1/4, the volume bound in (151)
is optimal. Thus, from (153), it follows that

‖NGjk(h)‖L2→L2 = O(1) ‖Njk(h)‖L2→L2 (154)

and so, from (134),

‖χj(hD)(1− ψδj (h))uh‖L2(Γj) = O(h−1/4−0) + ‖NDj (h)uh‖L2(∂Ω). (155)

We are left with bounding the diffractive term on the RHS of (155).

4.2.1. Bounding the diffractive term ‖NDj (h)uh‖. Here, we simply use that from (88)

and (77),

‖NDj (h)uh‖L2(Γj) ≤
∑
k 6=j
‖Njk(h)‖L2→L2 ‖ψ2δ

k uh‖L2 .

Then, by non-concentration and Sobolev restriction we again get that with δ =
1/2− 0, the mass ‖ψ2δ

k uh‖ = O(h−0) and so, in view of (153), it follows that

‖NDj (h)uh‖L2 = O(h−1/4−0). (156)

Consequently, from (156) and (155), the end result is that

‖χj(hD)(1− ψδj (h))uh‖L2(Γj) = O(h−1/4−0). (157)

On the other hand, from the small-scale Rellich commutator result in Lemma 5,

‖[1− χj(hD)] (1− ψδj (h))ujh‖L2(Γj) = O(h−δ/2) = O(h−1/4−0). (158)

So, from (157) and (158), it follows that

‖(1− ψδj (h))ujh‖L2 = O(h−1/4−0). (159)

We are left with estimating mass near corners ; that is,‖ψδj (h)ujh‖L2 .

4.3. Estimates near corners. Here, as in the diffractive case above, we use non-
concentration in Theorem 1 together with Sobolev restriction. Recall that from the
interior estimates centered at a corner cj ∈ Ω in Theorem 1, we have that

‖φh‖L2(B(cj ,hδ)) = O(hδ/2) = O(h1/4−0), δ = 1/2− 0. (160)

The bound in (160) combined with h-Sobolev estimates give
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Figure 5. The setup for acute angles.

‖uh‖L2({q∈Γj ;|q−cj |≤hδ}) / h
−1/2‖φh‖L2(B(cj ,hδ)) / h

−1/2+1/4−0. (161)

Thus, it follows from (161) that

‖ψδj (h)uh‖L2(Γj) = O(h−1/4−0). (162)

Consequently, in the obtuse case, Theorem 2 then follows from (159) and (162).
�

4.4. Proof of Theorem 2: the general case. Assume now that the angle αj ∈
(0, π/2]. The analysis here is very similar to the obtuse case, so we only indicate
here the relatively minor changes. The diffractive term ‖NDj (h)uh‖ is estimated in
the same way as in section 4.2.1. The key difference here is that for the geometric
term ‖NGj (h)uh‖, one uses the iterated jumps equation uh = N(h) 2 uh instead of just

uh = N(h)uh, since near-glancing rays to the flat edge Γj get reflected twice. First,
they reflect in the adjacent edge Γk, back to Γj and then reflect once more along the
initial flat edge Γj (see Figure 5). By a similar analysis to that in the obtuse case in
the previous section, one gets

χj(hD)(1− ψδj (h))1Γjuh

=

j+1∑
k=j−1

Njk(h) ζk(hD) (1− ψ2δ
k (h))1Γk N(h)2 uh +O(‖Njk(h)‖ · ‖ψ2δ

k (h))uk‖)

+O(h∞). (163)
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Just as in the previous section we consider corner cutoffs ψ̃k
2δ
b ψ̃k

2δ
b ψ2δ

k with

ψ̃2δ =
∑

k ψ̃k
2δ
, ψ̃2δ =

∑
k ψ̃k

2δ
and make the decomposition

(1− ψ2δ
k )N(h)2 = (1− ψ2δ

k )N(h) [ψ̃2δ + (1− ψ̃2δ)]N(h) [ψ̃2δ + (1− ψ̃2δ)]. (164)

One substitutes (164) in (163) and each of the resulting 4 terms is bounded using the
same analysis as in subsection 4.1: near diagonal terms in the Schwartz kernels where
|q−q′| / h2δ are bounded using Schur lemma. Off-diagonal terms with |q−q′| ' h2δ are
estimated using the h-FIO representation in (63) together with the stationary phase
argument in subsection 4.1.2. Just as in the obtuse case, the result is that

‖χj(hD)(1− ψδj (h))1Γjuh‖L2 = O(h−0)

j+1∑
k=j−1

‖Njk(h)‖L2→L2 .

The bounds ‖Njk(h)‖L2→L2 = O(h−1/4| log h|1/4) follow in the same way in the previ-
ous section (they do not depend on properties of the angle αj) and that completes the
proof of Theorem 2 in the general case. �

5. Estimates for transversal mass

We begin with some preliminaries on h-pseudodifferential operators along boundary
edges.

5.1. Pseudodifferential operators along boundary. Before giving the proof, we
begin with some background. Let Γk ⊂ ∂Ω be a boundary face (edge) with corner
endpoints ck and ck+1. The face Γk extends smoothly to an open edge Γ′k c Γk and we
let (x′, xn) : Uk → R2 be Fermi coordinates in a tubular neighbourhood Uk ⊃ Γ′k with
Γ′k = {xn = 0}. Let ρ ∈ C∞0 (Γ′k) be a cutoff with 0 ≤ ρ ≤ 1 and ρ(x′) = 1 for x′ ∈ Γk.

Definition 2. We say that P (h) ∈ Ψm
h (Γk) if P (h) : C∞0 (Γ′k)→ C∞0 (Γ′k) is a properly-

supported h-psdo with Schwartz kernel of the form

P (x′, y′, h) = (2πh)−1

∫
R
ei(x

′−y′)ξ′/ha(x′.ξ′, h)ρ(x′)ρ(y′) dξ′,

where a(x′, ξ′, h) ∈ Sm,−∞(T ∗Γ′k). Similarily, when a ∈ Sm,−∞δ we write P (h) ∈
Ψm
h,δ(Γ̊k).

We denote the induced boundary Laplacian on the edge Γk by ∆k where the latter
extends to a differential operator ∆k : C∞0 (Γ′k)→ C∞0 (Γ′k).

In view of the Neumann boundary condition, at a corner point ck we have ∂νkφh(ck) =
∂νk−1

φh(ck) = 0. Since ∂νk and ∂νk−1
are linearly independent, it then follows that ck

is critical for φh so that

∂x′uh(ck) = 0. (165)

Without loss of generality assume that x′(ck) = 0. Then, in view of (165) it is
clear that uh locally extends (independent of h) to a function, vh, on Γ′k that is even
with respect to the involution x′ → −x′ and an analogous statement holds at the
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other corner ck+1. Since in addition v′′h(−x′) = (−1)2v′′h(x′) = vh(x′), it follows that
vh ∈ C2

loc(Γ
′
k). Denoting the corresponding extension by vh, we set

ũh := ρ · vh ∈ C2
0 (Γ′k) ∩ L2(Γ′k).

Since the construction of vh involves two even involutions (one at each corner), by
choosing Γ′k sufficiently small, we can (and will) assume that

‖ũh‖L2(Γ′k) ≤ 3‖uh‖L2(Γk).

In the proof of Theorem 2 (see (158)), we have used transversal eigenfunction mass
estimates hδ close to corners. We collect the necessary results in the following:

Lemma 5. Let χj(hD) ∈ Ψ0
h(Γj) be the h-psdo glancing cutoff defined in subsection 4

and ψδj ∈ C∞0 (Γj) be the spatial corner cutoff in (66). Then, for any δ ∈ [0, 1/2), there

exists constants Cδ(Ω) > 0 and h0 > 0 such that for h ∈ (0, h0] and any k = 1, ...,M,

‖(I − χj(hD))(1− ψδj )(x′, h)uh‖L2(Γj) ≤ Cδ(Ω)h−δ/2.

Proof. Choose Fermi coordinates (x′, xn) : Ωj → R2 in a tubular neighbourhood Uj
of Γ′j ⊃ Γj as above and for any δ ∈ [0, 1/2), we consider the test operator Aδ(h) :

C∞0 (Uj)→ C∞0 (Uj) given by

Aδ(h) := χ(h−δxn) · (1− ψδj (x′, h))hDn.

Since {
(xn, x

′) ∈ suppχ(h−δ·) · (1− ψδj (·, h)
}
∩ (∂Ω \ Γj) = ∅,

by the Rellich identity [CTZ],

i

h
〈[−h2∆, Aδ(h)]φh, φh〉L2(Ω) = 〈(1− ψδk(x′, h) (I + h2∆Γk)ukh, u

k
h〉L2(Γk)

+O(h1−δ)‖uh‖2Γk (166)

provided ∂νφh|∂Ω = 0. In Fermi coordinates,

−h2∆ = (hDn)2 +R(x′, xn, hDx′), R(x′, 0, hDx′) = −h2∆Γk

and R(x, hDx′) is an h-differential operator of order two acting tangentially to the
boundary.

As a result, one can write the commutator matrix elements on the LHS of (166) as
a sum:

i

h
〈[(hDn)2, Aδ(h)]φh, φh〉+

i

h
〈[R(x, hDx′), Aδ(h)]φh, φh〉 (167)

=
i

h
〈[(hDn)2, χ(h−δxn)] · (1− ψδk(x′, h))hDnφh, φh〉

+
i

h
〈[R(x, hDx′), (1− ψδk(x′, h))hDn]χ(h−δxn) · φh, φh〉 (168)
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Since hDnχ(h−δxn) = h−δχ′(h−δ) ∈ h−δS0
δ , it follows that

i

h

〈
[(hDn)2, χ(h−δxn)] · (1− ψδj (x′, h))hDnφh, φh

〉
= O(h−δ).

Moreover, we note that the symbol of [(hDn)2, χ(h−δxn)] · (1−ψδj (x′, h)) is supported

in the hδ strip where |xn| / hδ and, in general, non-concentration is of no use in such
strips (only hδ balls). As for the second term in the last line of (167), the non-standard
terms arise from hitting the cutoff (1− ψδj (x′, h)) with Dx′ . Since

Dx′(1− ψδj (x′, h)) = −h−δ∂ψδj (x′, h) ∈ h−δS0
δ

and
supp ∂ψδj (·;h)ψ(h−δ·) ⊂ {(x′, xn); |x′| / hδ, |xn| / hδ}.

So, by L2-boundedness,

i

h
〈[R(x, hDx′), (1−ψδj (x′, h))hDn]χ(h−δxn)·φh, φh〉 = O(h−δ)‖φh‖2{|(x′,xn)|/hδ} = O(1),

where the final estimate follows by non-concentration (note that estimates on hδ balls
are equivalent to estimates on hδ-cubes). All other commutator terms are O(1) by
standard L2 results. So, after absorbing the error term, it then follows from Theorem
1 that

〈(1− χj(h−δx′))(I + h2∆j)h
2∆juh, uh〉L2(Γj) = O(h−δ). (169)

Running the same argument as above with the test operator

Ãδ(h) = (1− χ(h−δx′))χε(xn)(−h2∆j(x
′, hD))hDxn

gives

〈(1− χj(h−δx′))(I + h2∆j)h
2∆juh, uh〉L2(Γj) = O(h−δ). (170)

Consequently, setting

P (x′, hD) = (1− χj(h−δx′))(I + h2∆j)
2 : C∞(Γ̊j)→ C∞(Γ̊j),

it follows by adding (169) and (170) that

〈P (x′, hD)uh, uh〉L2(Γj) = O(h−δ). (171)

Let χ̃ ∈ C∞0 (Γ′j) with χ̃|Γj = 1. Abusing notation somewhat, we extend P (h) as an

operator P (h) : C∞0 (Γ′j) → C∞0 (Γ′j) so that P (h) ∈ Ψ0
h,δ(Γj). Let χ+ ∈ C∞(R; [0, 1])

with χ+ ≥ 0 so that χ+(u) = 0 for u ≤ 1/4 and χ+(u) = 1 for u ≥ 1/2. Consider the

h-psdo Q(h) ∈ Ψ
0)
h,δ(Γj) given by

Q(h) := χ̃ P (h)χ+(P )∗χ+(P ) χ̃.
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We apply sharp Garding to the operator Q(h) in two ways: First, note that

σ(Q) = p |χ+(p)|2 ≥ 0, p(x′, ξ′) = |ξ′|2x′ − 1

and since p|χ+(p)|2 ≤ p, sharp Garding and (171) gives

〈χ̃P (h)χ+(P )∗χ+(P )χ̃ũ, ũ〉Γ′j / 〈P (h)u, u〉Γj +O(h)‖u‖2Γj = O(h−δ). (172)

Next, apply sharp Garding yet again using p ≥ 1/4 on supp χ+(p) to get

〈χ̃χ+(P )∗χ+(P )χ̃ũ, ũ〉Γ′j / 〈χ̃P (h)χ+(P )∗χ+(P )ũ, ũ〉Γ′j +O(h)‖u‖2Γj = O(h−δ),

(173)
where the last bound in (173) follows from (172). Finally, note by non-negativity and
the bound in (172),

〈χ+(P )∗χ+(P )u, u〉Γj ≤ 〈χ̃P (h)χ+(P )∗χ+(P )ũ, ũ〉Γ′j = O(h−δ). (174)

Consequently from (174), by taking square roots,

‖(1− χj(h−δx′) · (I − χδj(hD))uh‖L2(Γj) = O(h−δ/2) (175)

and that finishes the proof of Lemma 5. �
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