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Abstract. In this paper we study the behaviour of the Neumann data of Dirichlet
eigenfunctions on simplices. We prove that the L2 norm of the (semi-classical)
Neumann data on each face is equal to 2/n times the (n− 1)-dimensional volume of
the face divided by the volume of the simplex. This is a generalization of [Chr17] to
higher dimensions. Again it is not an asymptotic, but an exact formula. The proof
is by simple integrations by parts and linear algebra.

We also consider the following inverse problem: do the norms of the Neumann
data on a simplex determine a constant coefficient elliptic operator? The answer is
yes in dimension 2 and no in higher dimensions.

1. Introduction

In this paper we extend the results of [Chr17] on triangles to simplices, which are
the higher dimensional analogues of triangles. The proof has many similarities but
involves more linear algebra and elementary geometry. We have chosen to separate
the two proofs in order to make the paper about triangles simple and clean. We also
have added to this paper some applications to rudimentary inverse problems.

Let T ⊂ Rn be an n dimensional (non-degenerate) simplex with faces G0, . . . Gn.
We consider the Dirichlet eigenfunction problem on T :{

−h2∆u = u in T,

u|∂T = 0.
(1.1)

The semiclassical parameter h > 0 denotes the (inverse of) the eigenvalues hence
takes values in a discrete set. We assume that the eigenfunctions are normalized:
‖u‖L2(T ) = 1. Our main result, similarly to in [Chr17] is that the Neumann data on
each face of the simplex is proportional to the volume of the face.

Theorem 1. Let T ⊂ Rn be a non-degenerate simplex with faces G0, G1, . . . , Gn and
suppose u solves (1.1).

Then the (semi-classical) Neumann data on each of the the boundary faces satisfies∫
Gj

|h∂ωu|2dSj =
2Voln−1(Gj)

nVoln(T )
. (1.2)

Here h∂ω is the semi-classical normal derivative on ∂T , dSj is the surface measure on
Gj, Voln(T ) is the volume of the simplex T , and Voln−1(Gj) is the n− 1 dimensional
induced volume of Gj.
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Remark 1.1. As in [Chr17], we are calling this “equidistribution” of Neumann mass
since it says that the Neumann data has mass proportional to the (n− 1)-dimensional
volume of the face to which it is restricted.

The proportionality constant in (1.2) depends in a seemingly non-obvious way on the
dimension n. However, it turns out this is the right dimensional constant in the case
of the Cauchy data for quantum ergodic eigenfunctions restricted to a hypersurface,
and indeed also for the boundary data quantum ergodic restriction theorems in the
original studies [GL93, HZ04]. One of the original motivations for the present paper
was to see if one could isolate the mass of the Dirichlet vs. Neumann data of quantum
ergodic eigenfunctions restricted to an interior simplex hypersurface in the Cauchy
data restriction theorem in [CTZ13]. Unfortunately this does not help, and the present
paper and [Chr17] do not preclude the possibility of quantum ergodic eigenfunctions
having o(1) (in L2) restrictions to the boundary of an interior simplex. See below for
a brief history.

A statement such as Theorem 1 is false in general for other polygonal domains. It is
clearly false in the case of a square, as discussed in [Chr17], as well as for a rectangular
parallelepiped in any dimension by looking at Fourier series.

1.1. Brief History. Previous results on restrictions to hypersurfaces primarily fo-
cused on upper bounds. Burq-Gérard-Tzvetkov [BGT07] give an upper bound of

the norm (squared) of the restrictions of eigenfunctions, of order O(h−1/2). In the
author’s paper with Hassell-Toth [CHT13], an upper bound of O(1) was proved for
(semi-classical) Neumann data restricted to arbitrary co-dimension 1 hypersurfaces in
any dimension. Both of these estimates are shown to be sharp, so this gives a lower
(and upper) bound for some eigenfunctions.

In the case of quantum ergodic eigenfunctions, a little more is known. Gérard-
Leichtnam [GL93] and Hassell-Zelditch [HZ04] give asymptotic formulae for (a density
one subsequence of) the Neumann (respectively Dirichlet) boundary data of Dirichlet
(respectively Neumann) quantum ergodic eigenfunctions. That means that there is a
lower bound, and explicit local asymptotic formula in this special case, at least for
most of the eigenfunctions. Similar statements were proved for interior hypersurfaces
in [TZ12,TZ13,CTZ13]. However, for an interior hypersurface, it seems an intractible
problem to separate the behaviour of the Dirichlet or Neumann data, or a sparse
subsequence must be removed. This again gives lower bounds on the norms of the
Dirichlet or Neumann data for some of the eigenfunctions.

Acknowledgements. The work in this paper is supported in part by NSF grant
DMS-1500812.

2. The standard simplex in R3

In this section we prove the theorem for the standard simplex in dimension 3 as it
is simple to see how the proof works in this case. In Section 3 we prove the general
result.
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Let p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 1, 0), and p3 = (0, 0, 1). The standard
simplex is given by all convex combinations of these vectors:

T =


3∑
j=0

tjpj :
3∑
j=0

tj = 1, and tj > 0

 .

That is, T is the four sided solid with the pj and 0 at the corners.
We use (x1, x2, x3) as the standard rectangular coordinates in R3. Let us denote

F1 denote the face in the (x2, x3) plane (where x1 = 0), F2 the face where x2 = 0,
F3 the face where x3 = 0, and F4 the remaining face. Then the unit normals are
νj = −ej , j = 1, 2, 3 and ν4 = (3)−1/2(1, 1, 1) respectively, where ej are the standard
basis vectors pointing in the direction of xj respectively. Then the statement of the
theorem involves the quantities |νj · h∂u| restricted to their respective faces.

Let us denote by X the vector field

X = (x1 +m1)∂x1 + (x2 +m2)∂x2 + (x3 +m3)∂x3 ,

where the mjs are parameters independent of x. A simple computation yields that
[−h2∆− 1, X] = −2h2∆. Then the eigenfunction equation (1.1) and an application of
Green’s formula gives∫

T
([−h2∆− 1, X]u)ūdV

=

∫
T

((−h2∆− 1)Xu)ūdV

=

∫
∂T

(−h∂νhXu)ūdS +

∫
∂T

(hXu)(h∂ν ū)dS,

or

2 = 2

∫
T
|u|2dV

= −2

∫
T

(h2∆u)ūdV

=

∫
∂T

(−h∂νhXu)ūdS +

∫
∂T

(hXu)(h∂ν ū)dS (2.1)

=

∫
∂T

(hXu)(h∂ν ū)dS, (2.2)

since we have assumed Dirichlet boundary conditions.
Let us break the analysis into the four different faces. On F1, we have∫

F1

(hXu)(h∂ν ū)dS

=

∫
F1

(((x1 +m1)h∂x1 + (x2 +m2)h∂x2 + (x3 +m3)h∂x3)u)ūdS1

= −m1

∫
F1

|h∂ν1u|2dS1,
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since h∂x1 = −h∂ν1 and h∂xj is tangential when j = 2, 3. Similarly, for j = 2, 3 we
have ∫

Fj

(hXu)(h∂νj ū)dSj = −mj

∫
Fj

|h∂νj |2dSj .

On F4 we need to be a little bit more careful. The points on F4 all satisfy x1 +
x2 + x3 = 1 since the normal is parallel to (1, 1, 1). The normal derivative is h∂ν4 =

3−1/2(h∂x1 + h∂x2 + h∂x3), and the tangent vectors are all linear combinations of
e3 − e1 = (−1, 0, 0) and e2 − e1 = (−1, 1, 0), so that

∂xj = 3−1/2∂ν4

for j = 1, 2, 3. Hence∫
F4

(hXu)h∂ν4 ūdS4

=

∫
F4

(((x1 +m1)h∂x1 + (x2 +m2)h∂x2 + (x3 +m3)h∂x3)u)h∂ν4 ūdS4

= (3)−1/2

∫
F4

(((x1 +m1) + (x2 +m2) + (x3 +m3))h∂ν4u)h∂ν4 ūdS4

= 3−1/2(1 +m1 +m2 +m3)

∫
F4

|h∂ν4u|2dS4.

Summing up, we have

2 = −m1

∫
F1

|h∂ν1u|2dS1 −m2

∫
F2

|h∂ν2u|2dS2 −m3

∫
F3

|h∂ν3u|2dS3

+ 3−1/2(1 +m1 +m2 +m3)

∫
F4

|h∂ν4u|2dS4. (2.3)

Now if mj = 0 for j = 1, 2, 3, using (2.3) we have

2 = (3)−1/2

∫
F4

|h∂ν4u|2dS4,

so that ∫
F4

|h∂ν4u|2dS4 = 31/2 · 2.

We know that Vol3(T ) = 1/3! = 1/6. The cross product computes the area of the
parallelogram, which is twice the area of the triangle, so that tells us that

Vol2(F4) = |(−1, 1, 0)× (−1, 0, 1)|/2

=
√

3/2.
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Hence ∫
F4

|h∂ν4u|2dS4 = 2 · 31/2

= 4(
√

3/2)

= (2/3)

(
2 · 31/2

1/6

)

=
2Vol2(F4)

nVol3(T )
.

For j = 1, 2, 3 we have
Vol2(Fj) = 1/2.

Differentiating (2.3) with respect to mj , we have

0 = −
∫
Fj

|h∂νju|2dSj + (3)−1/2

∫
F4

|h∂ν4u|2dS4,

or

2 =

∫
Fj

|h∂νju|2dSj

=

(
2

3

)(
1/2

1/6

)
=

(
2

3

)
Vol2(Fj)

Vol3(T )
.

This proves the theorem for the standard simplex in dimension 3.

3. Proof of Theorem 1

Let p1, . . . , pn be independent vectors in Rn, and let p0 = (0, . . . , 0) denote the
origin. Then

T =

{
n∑
0

tjpj :
∑

tj = 1 and tj > 0

}
is a simplex. If pj = ej (standard rectangular basis vectors) for each j, then we say T
is the standard simplex and denote it by T0.

Since the pjs are independent, the matrix

A =

 · · ·
p1 p2 · · · pn

· · ·


is invertible. Let B = A−1, and for x ∈ Rn set

y = Bx.

This transformation simply takes the simplex T to the standard simplex T0. Indeed,
if x = pj , then Bx = ej . Hence

T0 =
{∑

tjBpj ,
∑

tj = 1, tj > 0∀j
}
.
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We pause briefly to point out that this change of variables induces a volume element,
so that

det(A) = n!Vol(T ).

This is easily seen using the volume of the standard simplex is 1/n! and the Jacobian
for a change of volume integral is det(A).

We lift the transformation to T ∗Rn: for ξ ∈ Rn, let η = (B−1)T ξ. Then since the
symbol of the Laplacian in Rn is ξ21 + . . .+ ξ2n, the symbol for the Laplacian in our new
coordinates is

ξT ξ = ηTBBT η.

Set Γ = BBT and

−h2∆̃ = −
∑

Γij∂yi∂yj ,

the Laplacian in the y coordinates on the standard simplex T0.
For the eigenfunctions u on T , let v(y) = u(Ay) be the eigenfunctions in the y

coordinates. Since −h2∆̃ is constant coefficient, the same commutator argument can
be used here. Indeed, let

Y =
∑

(yj +mj)∂yj ,

and a simple calculation gives

[−h2∆̃− 1, Y ] = −2h2∆̃.

Following the recipe in Section 2, we have using −h2∆̃v = v and Green’s formula

2

∫
T0

|v|2dy = −2

∫
T0

(h2∆̃v)v̄dy

=

∫
T0

([−h2∆̃− 1, Y ]v)v̄dy

=

∫
T0

((−h2∆̃− 1)Y v)v̄dy

=

∫
T0

((−(h∂)TBBTh∂ − 1)Y v)v̄dy

=

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy

+

∫
∂T0

(−νTBBTh∂(hY v))v̄dy

=

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy
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since we have assumed Dirichlet boundary condtions. Here ν denotes the unit outward
normal and dS denotes the induced surface measure. Continuing,

2

∫
T0

|v|2dy =

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy

=

∫
T0

(Y v)(−h∂TBBTh∂v̄)dy −
∫
T0

(Y v)v̄dy

+

∫
∂T0

(hY v)(νTBBTh∂v̄)dS (3.1)

=

∫
∂T0

(hY v)(νTBBTh∂v̄)dS (3.2)

since ∆̃v̄ = v̄.
We have changed variables to be on T0 in order to make sure the normal vectors

are easy to compute. For T0, let Fj be the side where yj = 0, 1 6 j 6 n, and F0

the remaining face. Then for 1 6 j 6 n, we have the outgoing normal vectors to Fj
νj = −ej , where the ej are the standard basis vectors. For F0, we have transformed
to T0 so that

ν0 = n−1/2(1, . . . , 1).

Then the unit normal derivatives are

h∂νj = −h∂yj

for 1 6 j 6 n and

h∂ν0 = n−1/2(h∂x1 + . . .+ h∂xn).

We are assuming Dirichlet boundary conditions, so all of the tangential derivatives of
v vanish. That is, for 1 6 j 6 n,

h∂`v = 0,

except for ` = j. We also have using symmetry that on F0,

h∂ν0v = n1/2h∂yjv

for every 1 6 j 6 n. We recall again that yj = 0 on Fj for 1 6 j 6 n and on F0 we
have y1 + y2 + . . .+ yn = 1.
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Plugging these observations in to (3.2), we have

2

∫
T0

|v|2dy =

∫
∂T0

(hY v)(νTBBTh∂v̄)dS

=

n∑
j=1

∫
Fj

((∑
`

(m` + y`)h∂y`

)
v

)
(νTj BB

Th∂v̄)dSj

+

∫
F0

((∑
`

(m` + y`)h∂y`

)
v

)
(ν0

TBBTh∂v̄)dS0

=

n∑
j=1

∫
Fj

(mjh∂yjv)(h∂νj v̄)dSj

+

∫
F0

(
n∑
1

(n−1/2(yj +mj))h∂ν0v

)
(νT0 BB

Th∂v̄)dS0

=
n∑
j=1

∫
Fj

(−mjh∂νjv)(νTj BB
Th∂v̄)dSj

+

∫
F0

n−1/2(1 +m1 + . . .+mn)((h∂ν0)v)(νT0 BB
Th∂v̄)dS0

=
n∑
j=1

(−mj)Ij + n−1/2(1 +m1 + . . .+mn)I0, (3.3)

where for each 0 6 j 6 n

Ij =

∫
Fj

(h∂νjv)(νTj BB
Th∂v̄)dSj .

Let us now compute the Ijs. Using equation (3.3), setting mj = 0 for all 1 6 j 6 n,
we have

I0 = 2n1/2
∫
T0

|v|2dy.

Differentiating equation (3.3) with respect to mj yields for 1 6 j 6 n

Ij = n−1/2I0 = 2

∫
T0

|v|2dy.

Now we must compute the Ij in terms of the corresponding integrals on the original
simplex T . We first observe that, since for 1 6 j 6 n we have Fj ⊂ {yj = 0}, changing
variables on one of the boundary integrals induces the area of the (n− 1)-dimensional
parallelepiped spanned by p1, p2, . . . , pj−1, pj+1, . . . , pn. Denote this parallelepiped Γj ,
and observe that

Voln−1Γj = (n− 1)!Voln−1(Gj),

where Gj is the (n− 1)-dimensional simplex spanned by p1, p2, . . . , pj−1, pj+1, . . . , pn.

For F0, our area element is n1/2dy, so changing variables in the integral over F0

induces the area of the parallelepiped spanned by p1, p2 − p1, p3 − p1, . . . , pn − p1
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divided by n1/2. Denote this parallelepiped by Γ0, and again we have

Voln−1(Γ0) = (n− 1)!Voln−1(G0).

We now need to compute the integrand inside of each Ij in terms of the corresponding
normal derivatives on Gj of u.

We first observe that on Fj , for 1 6 j 6 n, h∂y` v̄ = 0 for ` 6= j, so that the
semiclassical gradient can be written

h∂yv|Fj = ejh∂yjv|Fj = νjh∂νjv|Fj .

Similarly, for j = 0, we have on F0

h∂v =

 h∂y1
...

h∂yn

 v
= n−1/2

 1
...
1

h∂ν0v
= ν0h∂ν0v.

Now for each j, let ωj be the unit outward normal on Gj . We know for each j on
the face Gj

h∂ωju|Gj = ωTj h∂xu|Gj

= ωTj B
Th∂yv|Fj

= (Bωj)
Th∂yv|Fj

= (Bωj)
T νjh∂νjv|Fj

= (ωTj B
T νj)h∂νjv|Fj ,

so that

h∂νjv|Fj = (ωTj B
T νj)

−1h∂ωju|Gj

written in the y and x coordinates respectively.
On the other hand, we have h∂x = BTh∂y, so that

νTj Bh∂xu = νTj BB
Th∂yv.

The left hand side is zero except for the projection on to the ωj , so that on each Gj
we have

νTj Bh∂xu = (νTj Bωj)ω
T
j h∂xu

= (ωTj B
T νj)h∂ωju. (3.4)

Hence

νTj BB
Th∂yv|Fj = (ωTj B

T νj)h∂ωju|Gj .
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Plugging these observations in to the formulae for the Ij , we get for 1 6 j 6 n

Ij =

∫
Fj

(h∂νjv)(νTj BB
Th∂v̄)dSj

=
1

(n− 1)!Voln−1(Gj)

∫
Gj

(
(ωTj B

T νj)
−1h∂ωju|Gj

) (
(ωTj B

T νj)h∂ωj ū|Gj

)
dS̃j

=
1

(n− 1)!Voln−1(Gj)

∫
Gj

|h∂ωju|2dS̃j ,

where dS̃j is the induced surface measure on Gj .
On the other hand, for I0, we have

I0 =

∫
F0

(h∂ν0v)(νT0 BB
Th∂v̄)dS0

=
n1/2

(n− 1)!Voln−1(G0)

∫
G0

|∂ω0u|2dS̃0,

where dS̃0 is the induced surface measure on G0.
We recall that ∫

T0

|v|2dy =
1

n!Voln(T )
,

so that rearranging we have for each 1 6 j 6 n

Ij =
2

n!Voln(T )
,

and

I0 = n1/2
2

n!Voln(T )
.

Rearranging, we have for 0 6 j 6 n∫
Gj

|h∂ωju|2dS̃j

=
2(n− 1)!Voln−1(Gj)

n!Voln(T )

=
2Voln−1(Gj)

nVoln(T )
,

which completes the proof of Theorem 1.

4. A simple inverse problem

The proof of Theorem 1 suggests a further question: If u solves a constant coefficient
eigenfunction equation, does the Neumann data determine the coefficients? In fact,
in this paper, we only have information about the norms of the Neumann data, so
we cannot fully answer this question using only this very elementary information. In
fact, in the general case, the answer is that the norms of the Neumann data do not
determine the coefficients (see Subsection 4.1 below). However, in dimension 2 the
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norms do determine the coefficients. We will return to this question after a few easier
results.

This question is, of course intimately related to posing the standard Laplacian eigen-
function problem on a different simplex. Let us pose it as such in dimension 2. Let
T ⊂ R2 be a triangle with sides a, b, c, with the convention that the length of the sides
are a, b, c respectively. Suppose u solves

(−h2∆− 1)u = 0 on T,

u|∂T = 0,

‖u‖L2(T ).

(4.1)

We have the following Theorem.

Theorem 2. Suppose u solves (4.1), and suppose Na =
∫
a |h∂νu|

2dS and similarly
for Nb and Nc. Then the three quantities Na, Nb, Nc uniquely determine the triangle
T (up to reflection).

This theorem seems obvious, but in the formulae for the Na, Nb, and Nc, there is
both the length of the side and the area of the triangle. The proof is by scaling.

Proof. Suppose we have another triangle T1 with the same Neumann data norms. Let
a1, b1, c1 denote the three sides of T1, again with the convention that a1, b1, c1 denote
also the length of the sides. We know that the Neumann data relates the lengths of
the sides to the area of the triangle. We have

Na =
a

Area(T )
,

and similarly for b, c. On the other hand, we also have

Na =
a1

Area(T1)
,

and similarly for b1, c1. Equating these quantities, we have

a

a1
=

Area(T )

Area(T1)
,

and similarly
b

b1
=

c

c1
=

Area(T )

Area(T1)
.

This means that the side lengths of T1 are all scalar multiples of the corresponding
sides on T with the same scalar. Hence T1 is similar to T . Let

λ =
Area(T )

Area(T1)
.

On the one hand, this implies that

Area(T ) = λArea(T1). (4.2)

On the other hand, we have
a = λa1 (4.3)

and similarly
b = λb1, c = λc1. (4.4)
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As the lengths scale linearly, the area scales quadratically. That is, (4.3) and (4.4)
imply that

Area(T ) = λ2Area(T1).

Hence combining with (4.2), we have λ2 = λ, so that λ = 1. This means precisely that
T = T1 (up to reflection).

�

We now consider the question of determining the coefficients of a constant coefficient
elliptic operator on the standard 2-simplex. Let B be a non-degenerate 2× 2 matrix,
and let Γ = BBT . Consider P = −Γijh∂xih∂xj be the associated positive definite
elliptic operator. Our next result is that the semi-classical Neumann data uniquely
determines the operator P . Interestingly, this does not determine the matrix B (see
Remark 4.4).

Theorem 3. Let B be a non-degenerate 2 × 2 matrix and Γ = BBT . Let P =
−Γijh∂xih∂xj . Let T0 be the standard triangle in R2 generated by the vectors (1, 0) and
(0, 1). Suppose u solves the eigenfunction problem

Pu = u in T0,

u|∂T0 = 0,

‖u‖L2(T0) = 1.

Let F1 and F2 denote the sides of length 1 and F0 the hypotenuse of length
√

2. Then
the norms

‖h∂νu‖2L2(F1)
, ‖h∂νu‖2L2(F2)

, and ‖h∂νu‖2L2(F0)

uniquely determine Γ.

Remark 4.1. We pause to remark that in the statement of the theorem is buried
a rather astounding fact: the norms of the (semi-classical) Neumann data of any
single eigenfunction determine Γ. Of course this requires some knowledge also about
the spectrum. In other words, if one eigenvalue and corresponding eigenfunction’s
Neumann mass is known, then Γ is uniquely determined.

Remark 4.2. It is also very interesting that the proof in fact computes the entries of
Γ explicitly in terms of the Neumann data norms. Indeed, if we label

J1 = ‖h∂νu‖2L2(F1)
, J2 = ‖h∂νu‖2L2(F2)

,

and
J0 = ‖h∂νu‖2L2(F0)

,

and we write Γ = (Γ)jk, we have

Γ11 =
2

J1
,

Γ22 =
2

J2
,

and

Γ12 = Γ21 =
2
√

2

J0
− 1

J1
− 1

J2
.
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In particular, if J1 = J2 = 2 and J0 = 2
√

2, we have Γ = I as expected (since each
Jj is twice the length of the sides, which is the length of the side divided by the area
of the triangle).

First we write a Lemma giving yet another way of computing the Neumann data
mass. We state this Lemma in any dimension.

Lemma 4.3. Let B be a non-degenerate n× n matrix, Γ = BBT , and

P = −Γijh∂xih∂xj .

Let T0 be the standard simplex in Rn with faces F0, F1, . . . , Fn in the notation of earlier
in this paper. Suppose u solves the eigenfunction problem

Pu = u in T0,

u|∂T0 = 0,

‖u‖L2(T0) = 1.

(4.5)

Then on each face Fj, 0 6 j 6 n, we have∫
Fj

(h∂νju)(νTj BB
Th∂xū)dSj = |BT νj |2

∫
Fj

|h∂νju|2dSj ,

where dSj is the induced surface measure on Fj as usual.

Note that this is a different way of computing this quantity than in (3.4).

Proof. We observe that on Fj , for 1 6 j 6 n, h∂x` ū = 0 for ` 6= j, so that

h∂xu = ejh∂xju = νjh∂νju.

Similarly, for j = 0, we have on F0

h∂u =

 h∂y1
...

h∂yn

u
= n−1/2

 1
...
1

h∂ν0u
= ν0h∂ν0u.

Then on each face Fj with normal νj , we have

νTj BB
Th∂ū = νTj BB

T νjh∂νj ū

= (BT νj)
T (BT νj)h∂νj ū

= |BT νj |2h∂νj ū.
Hence on each face Fj , we have∫

Fj

(h∂νju)(νTj BB
Th∂ū)dSj = |BT νj |2

∫
Fj

|h∂νju|2dSj .

This completes the proof. �
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Proof of Theorem 3. The proof proceeds by using an eigenvector diagonalization ar-
gument. It is interesting that, although the argument uses the existence of eigenval-
ues/vectors of Γ, we do not need to know them.

Let v1, v2 be orthonormal eigenvectors for Γ. Since Γ = BBT is positive definite,
write λ21, λ

2
2 for the eigenvalues of Γ so that Γvj = λ2jvj for j = 1, 2. Let

L =

 v1 v2

 ,

so that (since L is orthogonal),

LTΓL =

(
λ21 0
0 λ22

)
.

Let us denote

G = L

(
λ1 0
0 λ2

)
,

so that GGT = Γ.
We now change variables using the matrix G. Let T1 denote the triangle spanned by

the new coordinates v1, v2. Rescaling in each variable vj 7→ λ−1
j vj gives a new triangle

T . Let w(x) = u(Gx), so that∫
T
|w|2dV =

∫
T
|u(Gx)|2dV = |G|−1

∫
T0

|u|2dV =
1

λ1λ2
. (4.6)

We also have −h2∆w = w on T0, so we can use the same commutator argument as
above to compute the mass of the Neumann data. For j = 1, 2, let Ij =

∫
λ−1
j vj
|h∂νw|2dS,

and I0 =
∫
H |h∂νw|

2dS be the Neumann mass of the function w on the legs spanned

by the λ−1
j vj and the hypotenuse H. Using Theorem 1 and (4.6), we have for j = 1, 2

Ij =

(
1

λ1λ2

)(
length of λ−1

j vj

area(T )

)

=

(
1

λ1λ2

)(
λ−1
j

(λ−1
1 λ−1

2 /2)

)

=
2

λj
.

Further,

I0 = 2(λ−2
1 + λ−2

2 )1/2.

For j = 0, 1, 2, let

Jj =

∫
Fj

|h∂νu|2dS

be the Neumann mass of the original eigenfunction u on the faces of T0. These are the
quantities we are assuming we know.
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Using Lemma 4.3, that means

Jj =
1

|GT ν|2

∫
Fj

(h∂νu)(νTGGTh∇ū)dS

=

(
1

|GT ν|2

)(
length of Fj

length of λ−1
j vj

)
Ij

=

(
1

|GT ν|2

)
λj

(
2

λj

)
=

2

|GT ν|2
(4.7)

for j = 1, 2, and

J0 =
2
√

2

|GT ν|2
.

We pause momentarily to recall that the normal vectors ν in the above expressions are
the normals to the original faces Fj , j = 0, 1, 2 on the standard triangle T0.

Recall that ν1 = (−1, 0), ν2 = (0,−1) and ν0 = (
√

2)−1(1, 1), which will help us
determine the matrix Γ.

Write

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
.

As Γ is symmetric, we have Γ12 = Γ21, so we only need to determine the three numbers
Γ11,Γ12, and Γ22.

The quantities we need to examine are all of the form |GT νj |2, which we rewrite:

|GT νj |2 = (GT νj)
T (GT νj)

= νTj GG
T νj

= νTj Γνj .

Plugging in the νj , j = 0, 1, 2, we have:

νT1 Γν1 = (−1, 0)Γ

(
−1
0

)
= Γ11,

and similarly

νT2 Γν2 = Γ22.
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For ν0, we get information about the off diagonal terms as well:

νT0 Γν0 =
1

2
(1, 1)Γ

(
1
1

)
=

1

2
(1, 1)

(
Γ11 + Γ12

Γ21 + Γ22

)
=

1

2
(Γ11 + Γ12 + Γ21 + Γ22)

=
1

2
(Γ11 + 2Γ12 + Γ22) (4.8)

again due to Γ being symmetric.
Returning now to (4.7), we have for j = 1, 2

Jj =
2

|GT νj |2

=
2

Γjj
.

Hence

Γ11 =
2

J1
and similarly for Γ22. For Γ12, we appeal to equation (4.8) to get

J0 =
2
√

2

|GT ν0|2

=
2
√

2
1
2(Γ11 + 2Γ12 + Γ22)

=
4
√

2

Γ11 + 2Γ12 + Γ22
.

Rearranging, we have

Γ11 + 2Γ12 + Γ22 =
4
√

2

J0
,

so that solving for Γ12, we have

Γ12 =
2
√

2

J0
− 1

2
(Γ11 + Γ22).

Plugging in the known values of Γ11 and Γ22, we have

Γ12 =
2
√

2

J0
− 1

2

(
2

J1
+

2

J2

)
=

2
√

2

J0
− 1

J1
− 1

J2
.

This gives the Γjk in terms of the known quantities J1, J2, and J0, completing the
proof. �

Remark 4.4. It is interesting to note that the proof of Theorem 3 does not uniquely
determine the matrix B, due to rotational invariance. Indeed, if

B =

(
a b
c d

)
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with a = c = d = 2−1/2 and b = −2−1/2, then we still have a2 + c2 = b2 + d2 = 1, and
ac+ bd = 0. Note, however, that BBT = I in this case as well.

4.1. Dimension 3: an example. The result in Theorem 3 is false in higher dimen-
sions, even for small perturbations of I. Let T0 be the standard simplex in R3, B be
a 3 × 3 non-degenerate matrix, Γ = BBT , and P = −Γijh∂xih∂xj . Suppose u solves
the eigenfunction problem (4.5). Lemma 4.3 still applies, with νj = −ej for 1 6 j 6 3

and ν0 = 3−1/2(1, 1, 1). For 0 < ε < 1, define the matrix B by

BT =

 a 0 0

d (1− ε2)1/2 ε

ε ε (1− ε2)1/2

 ,

where

d =
−3ε(1− ε2)1/2 − ε2

(1− ε2)1/2 + ε

and

a = (1− d2 − ε2)1/2.
Observe that B = I +O(ε) and satisfies

|BT e1|2 = a2 + d2 + ε2 = 1,

|BT e2|2 = (1− ε2) + ε2 = 1,

|BT e3|2 = ε2 + (1− ε2) = 1,

and

|BT (1, 1, 1)T |2 = a2 + (d+ (1− ε2)1/2 + ε)2 + (2ε+ (1− ε2)1/2)2

= a2 + d2 + (1− ε2) + ε2 + 2d(1− ε2)1/2 + 2dε+ 2ε(1− ε2)1/2

+ 4ε2 + (1− ε2) + 4ε(1− ε2)1/2

= (1− ε2) + (1− ε2) + ε2 + 2d((1− ε2)1/2 + ε)

+ 2ε(1− ε2)1/2 + 4ε2 + (1− ε2) + 4ε(1− ε2)1/2

= 2− ε2 − 6ε(1− ε2)1/2 − 2ε2 + 6ε(1− ε2)1/2 + 1 + 3ε2

= 3.

These are the same values one gets from B = I = Γ, however BBT 6= I, so these 4
numbers do not determine Γ.
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