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Abstract. We consider the resolvent on asymptotically Euclidean warped

product manifolds in an appropriate 0-Gevrey class, with trapped sets con-
sisting of only finitely many components. We prove that the high-frequency
resolvent is either bounded by Cǫ|λ|ǫ for any ǫ > 0, or blows up faster than

any polynomial (at least along a subsequence). A stronger result holds if the
manifold is analytic. The method of proof is to exploit the warped prod-
uct structure to separate variables, obtaining a one-dimensional semiclassical
Schrödinger operator. We then classify the microlocal resolvent behaviour as-

sociated to every possible type of critical value of the potential, and translate
this into the associated resolvent estimates. Weakly stable trapping admits
highly concentrated quasimodes and fast growth of the resolvent. Conversely,
using a delicate inhomogeneous blowup procedure loosely based on the classi-

cal positive commutator argument, we show that any weakly unstable trapping
forces at least some spreading of quasimodes.

As a first application, we conclude that either there is a resonance free

region of size | Imλ| 6 Cǫ|Reλ|−1−ǫ for any ǫ > 0, or there is a sequence of
resonances converging to the real axis faster than any polynomial. Again, a
stronger result holds if the manifold is analytic. As a second application, we
prove a spreading result for weak quasimodes in partially rectangular billiards.

1. Introduction

In this paper, we consider manifolds which have a warped product structure and
are asymptotically Euclidean with a certain 0-Gevrey regularity. Our main result
is that the cutoff resolvent is either (almost) bounded or blows up faster than any
polynomial. Of course, the proof gives much more information than this simple
statement, but for aesthetic reasons we prefer to phrase it in this fashion. Let us
state the main result.

Theorem 1. Let X be a 0-Gevrey smooth G0
τ , τ < ∞, warped product manifold

without boundary which is a short range perturbation of Euclidean space (with one
or two infinite ends). Assume also that the trapped set on X has finitely many
connected components. Let −∆ be the Laplace-Beltrami operator on X.

Then either
1: For every ϕ ∈ C∞

c (X) and every ǫ > 0, there exists Cǫ > 0 such that

(1.1) ‖ϕ(−∆− (λ− i0)2)−1ϕ‖ 6 Cǫ|λ|ǫ, |λ| ≫ 1.

or
2: For every N > 0, there exists ϕ ∈ C∞

c (X), CN > 0, and a sequence λj ∈ R,
λj → ∞, such that

(1.2) ‖ϕ(−∆− (λj − i0)2)−1ϕ‖ > CN |λj |N .
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Remark 1.1. The warped product structure at infinity can be replaced by a num-
ber of different non-trapping infinite “ends”, using the recent gluing theorem of
Datchev-Vasy [DV12] (see also [Chr08] and Appendix A).

The dichotomy in Theorem 1 is from the following idea: if there is any weakly
stable trapping on X, then there are well-localized quasimodes, and we are in Case
2 of the Theorem. If all the trapping is at least weakly unstable, we need to prove
there is weak microlocal non-concentration near each connected component of the
trapped set, as well as prove that there is no strong tunneling between different
connected components (i.e. that the different connected components at the same
energy don’t “talk” to each other too much).

As we shall see, the worst behaviour in (1.1) in Theorem 1 comes from weakly
unstable trapping which is infinitely degenerate. Since such trapping cannot occur
on an analytic manifold, there is a nice improvement in this case, given in the next
Corollary.

Corollary 1.2. In addition to the assumptions of Theorem 1, assume that the
manifold X is analytic.

Then either
1: There exists δ > 0 such that for every ϕ ∈ C∞

c (X), there is a constant C > 0
for which we have the estimate

(1.3) ‖ϕ(−∆− (λ− i0)2)−1ϕ‖ 6 C|λ|−δ, |λ| → ∞.

or
2: For every N > 0, there exists ϕ ∈ C∞

c (X), CN > 0, and a sequence λj ∈ R,
λj → ∞, such that

(1.4) ‖ϕ(−∆− (λj − i0)2)−1ϕ‖ > CN |λj |N .
Remark 1.3. Upon rescaling to a semiclassical problem, Theorem 1 states that
the semiclassical cutoff resolvent is either controlled by h−2−ǫ for any ǫ > 0, or
blows up faster than h−N for any N . The corollary states that if the manifold
is analytic, the first possibility can be replaced with h−2+δ for some δ > 0 fixed,
depending on the trapping.

As usual, high energy resolvent estimates imply there are regions free of reso-
nances by simple perturbation of the spectral parameter. On the other hand, the
proof of the alternative large growth of the resolvent along a subsequence proceeds
by quasimode construction. Then if our metric has a complex analytic extension
outside of a compact set, we can apply the results of Tang-Zworski [TZ98] to con-
clude existence of resonances. This results in the following Corollary.

Corollary 1.4. In addition to the assumptions of Theorem 1, assume X admits
a complex analytic extension outside of a compact set so that resonances may be
defined by complex scaling. Then either

1: For every ǫ > 0 there is a constant Cǫ > 0 such that the region

{λ ∈ C : | Imλ| 6 Cǫ|Reλ|−1−ǫ, |λ| ≫ 1}
is free of resonances and the estimate (1.1) holds there (with a suitably modified
constant), or

2: For every N > 0, there exists a sequence of resonances {λj} such that

| Imλj | 6 |Reλj |−N , |λj | → ∞.
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In particular, if X is analytic, then either there exists δ > 0 and C > 0 such
that the region

{λ ∈ C : | Imλ| 6 C|Reλ|−1+δ, |λ| ≫ 1}
is free from resonances, or there is a sequence converging to the real axis at an
arbitrarily fast polynomial rate.

1.1. Resolvents and the local smoothing effect. One of the many motivations
for studying resolvents and resolvent estimates is to understand the local smoothing
effect for the Schrödinger equation on manifolds with trapping. It is well known (see,
for example, [Tao06, Doi96]) that on asymptotically Euclidean manifolds without
trapping, solutions to the Schrödinger equation enjoy a 1/2 derivative local smooth-
ing effect. This says that, locally in space, and on average in time, solutions are 1/2
derivative smoother than the initial data. To be precise, let X be such a manifold,
−∆ the Laplacian on X, u0 a Schwartz function on X, and χ ∈ C∞

c (X) a cutoff
function. Then the following estimate holds true for any T > 0:

∫ T

0

‖χeit∆u0‖2H1/2(X)dt 6 CT ‖u0‖2L2(X).

There are several ways to prove such an estimate; one way proceeds through resol-
vent estimates (see Section 5 below). A nice benefit of using the resolvent formalism
to understand local in time local smoothing (that is, for finite T ) is that one really
sees how the spectral estimates are related to the smoothing effect. Since one only
needs a resolvent estimate in a fixed strip near the real axis, if one is in a situation
where the limiting resolvent blows up, one simply uses the trivial bound away from
the real axis to get a zero derivative smoothing effect (or just integrates the L2(X)
mass in time). However, if the limiting resolvent has some decay, then there is a
non-trivial local smoothing estimate. This is the case, for example, if the manifold
is analytic and all of the trapping is at least weakly unstable. Let us state this as
a corollary:

Corollary 1.5. Let X be an analytic warped product manifold so that all of the
assumptions of Corollary 1.2 hold. Assume also that every connected component
of the trapped set is at least weakly unstable, so that conclusion 1 of Corollary 1.2
holds for some δ > 0. Then for all χ ∈ C∞

c (X), u0 ∈ S(X), and T > 0, there exists
CT > 0 such that

∫ T

0

‖χeit∆u0‖2Hδ/2(X)dt 6 CT ‖u0‖2L2(X).

Acknowledgements. This research was partially supported by NSF grant DMS-
0900524. The author would like to thank K. Datchev, L. Hillairet, J. Metcalfe,
E. Schenck, M. Taylor, A. Vasy, and J. Wunsch for many helpful and stimulating
discussions.

2. Preliminaries

2.1. The geometry. We have assumed that our manifold X has a warped product
structure with one or two infinite ends which are short range perturbations of Rn.
This means we are considering the manifold X = Rx × Ωn−1

θ (or X = R
+
x × Ωn−1

θ

if one infinite end), equipped with the metric

g = dx2 +A2(x)Gθ,



4 H. CHRISTIANSON

where A ∈ C∞ is a smooth function, A > ǫ > 0 for some epsilon (or A(x) = x
for x > 0 near 0 if one infinite end), and Gθ is the metric on a smooth compact
n− 1 dimensional Riemannian manifold Ωn−1 without boundary. The short range
assumption means that as |x| → ∞, we have

|∂α(g − gE)| 6 Cα 〈x〉−2−|α|
,

where
gE = dx2 + x2Gθ.

This means that X is asymptotically Euclidean as |x| → ∞. This assumption
merely allows us to use standard techniques to glue resolvent estimates together
without worrying about trapping at infinity. The assumptions can of course be
weakened to “long-range” perturbation (following Vasy-Zworski [VZ00]), but this
paper is really about the local phenomenon of trapping rather than having the most
general “infinity”. We use the notation θ ∈ Ωn−1 to denote the “angular” directions.
This is in analogue with the case of spherically symmetric warped product spaces
where Ωn−1 = S

n−1 is the sphere and X is asymptotically R
n.

From this metric, we get the volume form

dVol = A(x)n−1dxdσ,

where σ is the volume measure on Ωn−1. The Laplace-Beltrami operator acting on
0-forms is computed:

∆f = (∂2x +A−2∆Ωn−1 + (n− 1)A−1A′∂x)f,

where ∆Ωn−1 is the (non-positive) Laplace-Beltrami operator on Ωn−1.
We want to exploit the warped product structure to reduce spectral questions to

a one-dimensional problem. Let us first conjugate to a problem on the flat cylinder.

That is, let Tu(x, θ) = A(n−1)/2(x)u(x, θ) so that ∆̃ = T∆T−1 is essentially self-
adjoint on L2(dxdσ), where σ is the usual volume measure on Ωn−1. We have

−∆̃ = −∂2x −A−2(x)∆Ω + V1(x),

where

V1(x) =
n− 1

2
A′′A−1 − (n− 1)(n− 3)

4
(A′)2A−2.

Separating variables we write for u ∈ L2(dxdσ)

u(x, θ) =
∑

l,k

ulk(x)ϕlk(θ),

where ϕlk(θ) are the eigenfunctions on Ωn−1 with eigenvalue λ2k. Then

−∆̃u =
∑

l,k

ϕlk(θ)Qkulk,

where
Qkϕ(x) = (−∂2x + λ2kA

−2(x) + V1(x))ϕ(x).

Setting h = λ−1
k and rescaling, we end up with the semiclassical operator

P (h)ϕ(x) = (−h2∂2x + V (x))ϕ(x),

where
V (x) = A−2(x) + h2V1(x).

We sometimes will write V0(x) = A−2(x) for the principal part of the effective
potential.
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The semiclassical versions of Theorem 1 and Corollary 1.2 are given in the fol-
lowing.

Theorem 2. Under the assumptions above, either
1: For every ϕ ∈ C∞

c (R) and every ǫ > 0 there exists Cǫ > 0 such that

‖ϕ(−h2∂2x + V − (z − i0))−1ϕ‖ 6 Cǫh
−2−ǫ, z ∈ I,

for a compact interval I, or
2: For every N > 0, there exists ϕ ∈ C∞

c (X), CN > 0, and z ∈ R, z 6= 0, such
that

‖ϕ(−h2∂2x + V − (z − i0))−1ϕ‖ > CNh
−N ,

along a subsequence as h→ 0+.

Corollary 2.1. In addition to the assumptions of Theorem 2, assume that the
manifold X is analytic.

1: There exists δ > 0 such that, for every ϕ ∈ C∞
c (R) there is a constant C > 0

for which we have the following estimate

‖ϕ(−h2∂2x + V − (z − i0))−1ϕ‖ 6 Ch−2+δ, z ∈ I,

for a compact interval I, or
2: For any N > 0, there exists ϕ ∈ C∞

c (X), CN > 0, and z ∈ R, z 6= 0, such
that

‖ϕ(−h2∂2x + V − (z − i0))−1ϕ‖ > CNh
−N

along a subsequence as h→ 0+.

2.2. The 0-Gevrey class G0
τ . Our manifolds already have very nice geometry as

|x| → ∞, and moreover we have separated variables. Since Ωn−1 is a C∞ compact
manifold without boundary, the only additional regularity assumptions we need to
impose will be at the critical elements of the manifold X, that is, at the critical
points of the function A(x). In order to have a meaningful symbol class (especially
once we are working with the calculus of 2 parameters), we need to know that near
the critical elements, the function A is not too far away from being analytic. For
this, we introduce the following 0-Gevrey classes of functions with respect to order
of vanishing. For 0 6 τ <∞, let G0

τ (R) be the set of all smooth functions f : R → R

such that, for each x0 ∈ R, there exists a neighbourhood U ∋ x0 and a constant C
such that, for all 0 6 s 6 k,

|∂kxf(x)− ∂kxf(x0)| 6 C(k!)C |x− x0|−τ(k−s)|∂sxf(x)− ∂sxf(x0)|, x→ x0 in U.

This definition says that the order of vanishing of derivatives of a function is only
polynomially worse than that of lower derivatives. Every analytic function is in one
of the 0-Gevrey classes G0

τ for some τ < ∞, but many more functions are as well.
For example, the function

f(x) =

{
exp(−1/xp), for x > 0,

0, for x 6 0

is in G0
p+1, but

f(x) =

{
exp(− exp(1/x)), for x > 0,

0, for x 6 0
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is not in any 0-Gevrey class for finite τ . This implies that the 0-Gevrey class
contains a rich subset of functions with compact support as well as functions which
are constant on intervals.

The 0-Gevrey class assumption will only come in to play in the case of infinitely
degenerate critical points (see Subsection 3.4).

2.3. Semiclassical calculus with 2 parameters. Following Sjöstrand-Zworski
[SZ07, §3.3] and [CW11], we introduce a calculus with two parameters. We will not
present the proofs in the following lemmas, as they have appeared in several other
places, but merely include the statements for the reader’s convenience, as well as
pointers to where proofs can be found.

For α ∈ [0, 1] and β 6 1− α, we let

Sk,m,m̃
α,β (T ∗(Rn)) :=

=

{
a ∈ C∞ (

R
n × (Rn)∗ × (0, 1]2

)
:

∣∣∣∂ρx∂
γ
ξ a(x, ξ;h, h̃)

∣∣∣ 6 Cργh
−mh̃−m̃

(
h̃

h

)α|ρ|+β|γ|

〈ξ〉k−|γ|
}
.

Throughout this work we will always assume h̃ > h. We let Ψk,m,m̃
α,β denote the cor-

responding spaces of semiclassical pseudodifferential operators obtained by Weyl
quantization of these symbols. We will sometimes add a subscript of h or h̃ to
indicate which parameter is used in the quantization; in the absence of such a
parameter, the quantization is assumed to be in h. The class Sα,β (with no super-

scripts) will denote S0,0,0
α,β for brevity.

In [SZ07] (for the homogeneous case α = β = 1/2), and in [CW11] (for the
inhomogeneous case α 6= β), it is observed that the composition in the calculus
can be computed in terms of a symbol product that converges in the sense that
terms improve in h̃ and ξ orders, but not in h orders. This happens because when
α+β = 1, the (h−α, h−β) calculus is marginal, which is what the rescaling (blowup)

and introduction of the second parameter h̃ accomplishes. In the sequel, we will
always assume we are in the inhomogeneous marginal case:

α+ β = 1.

If α + β < 1, then of course the calculus is no longer marginal and computations
become much easier.

By the same arguments employed in [SZ07] (see [CW11]), we may easily verify

that the calculus Ψα,β is closed under composition: if a ∈ Sk,m,m̃
α,β and b ∈ Sk′,m′,m̃′′

α,β

then
Opw

h (a) ◦Opw
h (b) = Opw

h (c) with c ∈ Sk+k′,m+m′,m̃+m̃′

α,β .

In addition, as in [CW11], we have a symbolic expansion for c in powers of h̃.
We have the following Lemma from [CW11], which is a more general version

of [SZ07, Lemma 3.6]:

Lemma 2.2. Suppose that a, b ∈ Sα,β, and that cw = aw ◦ bw. Then

(2.1) c(x, ξ) =

N∑

k=0

1

k!

(
ih

2
σ(Dx, Dξ;Dy, Dη)

)k

a(x, ξ)b(y, η)|x=y,ξ=η + eN (x, ξ) ,
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where for some M

|∂γeN | 6 CNh
N+1

×
∑

γ1+γ2=γ

sup
(x,ξ)∈T∗Rn

(y,η)∈T∗Rn

sup
|ρ|6M ,ρ∈N4n

∣∣Γα,β,ρ,γ(D)(σ(D))N+1a(x, ξ)b(y, η)
∣∣ ,(2.2)

where σ(D) = σ(Dx, Dξ;Dy, Dη) as usual, and

Γα,β,ρ,γ(D) = (hα∂(x,y), h
β∂(ξ,η)))

ρ∂γ1∂γ2 .

As a particular consequence we notice that if a ∈ Sα,β(T
∗
R

n) and b ∈ S(T ∗
R

n)
then

c(x, ξ) =
N∑

k=0

1

k!
(ihσ(Dx, Dξ;Dy, Dη))

k
a(x, ξ)b(y, η)|x=y,ξ=η(2.3)

+OSα,β

(
hN+1 max

{
(h̃/h)(N+1)α, (h̃/h)(N+1)β

})
.

We will let B denote the “blowdown map”

(2.4) (x, ξ) = B(X,Ξ) = ((h/h̃)αX, (h/h̃)βΞ).

The spaces of operators Ψh and Ψh̃ are related via a unitary rescaling in the fol-

lowing fashion. Let a ∈ Sk,m,m̃
α,β , and consider the rescaled symbol

a

((
h/h̃

)α
X,
(
h/h̃

)β
Ξ

)
= a ◦ B ∈ Sk,m,m̃

0,0 .

Define the unitary operator Th,h̃u(X) =
(
h/h̃

)nα
2

u
((
h/h̃

)α
X
)
, so that

Opw
h̃
(a ◦B)Th,h̃u = Th,h̃Opw

h (a)u.

3. The trapping

In order to prove Theorem 2 and Corollary 2.1, we consider the critical points
of the potential V (x), or more specifically the critical points of the principal part,
V0(x) = A−2, of V = A−2 + h2V1. The assumption that the trapped set has
only finitely many connected components implies that the potential V0(x) has only
finitely many critical values. We break the analysis of the critical values into those
for which the Hamiltonian flow of the principal part of our symbol, p0 = ξ2+V0(x),
is locally unstable (either “genuinely” unstable or of transmission inflection type),
and those for which the Hamiltonian flow is stable. This leads to the dichotomy
in Theorem 2 and Corollary 2.1. The idea is that, if there is a critical value for
which the Hamiltonian flow is stable, then we can immediately construct very good
quasimodes and reach the second conclusions in Theorem 2 and Corollary 2.1. This
is relatively straightforward and written in Subsection 3.6.

On the other hand, if there is no stable trapping, then all trapping is unstable,
consisting of disjoint critical sets, and even if two critical sets exist at the same po-
tential energy level, they must be separated by an unstable maximum critical value
at a higher potential energy level (otherwise there would be a minimum in between,
and hence at least weakly stable trapping), so they do not see each other. That
is to say, the weakly stable/unstable manifolds of the separating maximum form a
separatrix in the reduced phase space. This allows us to glue together microlocal
estimates near each critical set, and the resolvent estimate is then simply the worst
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of these estimates. Hence it suffices to classify microlocal resolvent estimates in
a neighbourhood of any of these unstable critical sets. This is accomplished in
Subsections 3.1-3.5. In this sense, this section contains a catalogue of microlocal
resolvent estimates.

It is important to note at this point that for unstable trapping of finite degener-
acy, the relevant resolvent estimates are all o(h−2), that is to say, the sub-potential
h2V1 is always of lower order. If the trapping is unstable but infinitely degenerate,
we need to work harder to absorb the sub-potential. The 0-Gevrey assumption will
be important here.

3.1. Unstable nondegenerate trapping. Unstable nondegenerate trapping oc-
curs when the potential V0 has a nondegenerate maximum. As mentioned previ-

ously, let us for the time being consider the operator Q̃ = −h2∂x+V0(x)−z, where
V0(x) = A−2(x). To say that x = 0 is a nondegenerate maximum means that
x = 0 is a critical point of V0(x) satisfying V ′

0(0) = 0, V ′′
0 (0) < 0, and then the

Hamiltonian flow of q̃ = ξ2 + V0(x) near (0, 0) is
{
ẋ = 2ξ,

ξ̇ = −V ′
0(x) ∼ x,

so that the stable/unstable manifolds for the flow are transversal at the critical
point (0, 0).

The following result as stated can be read off from [Chr07,Chr10,Chr11], and has
also been studied in slightly different contexts in [CdVP94a,CdVP94b] and [BZ04],
amongst many others. We only pause briefly to remark that, since the lower bound

on the operator Q̃ is of the order h/ log(1/h) ≫ h2, the same result applies equally

well to Q̃+ h2V1.

Proposition 3.1. Suppose x = 0 is a nondegenerate local maximum of the potential
V0, V0(0) = 1. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗

R) have compact support
in {|(x, ξ)| 6 ǫ}. Then there exists Cǫ > 0 such that

(3.1) ‖Q̃ϕwu‖ > Cǫ
h

log(1/h)
‖ϕwu‖, z ∈ [1− ǫ, 1 + ǫ].

3.2. Unstable finitely degenerate trapping. In this subsection, we consider an
isolated critical point leading to unstable but finitely degenerate trapping. That
is, we now assume that x = 0 is a degenerate maximum for the function V0(x) =
A−2(x) of order m > 2. If we again assume V0(0) = 1, then this means that near
x = 0, V0(x) ∼ 1−x2m. Critical points of this form were studied in [CW11], but the
proof can also be more or less deduced from the proofs of Propositions 3.6 and 3.8
below. We only remark briefly that again, since the lower bound on the operator

Q̃ is of the order h2m/(m+1) ≫ h2, the estimate applies equally well to Q̃+ h2V1.

Proposition 3.2. Let Q̃ = −h2∂2x + V0(x) − z. For ǫ > 0 sufficiently small, let
ϕ ∈ S(T ∗

R) have compact support in {|(x, ξ)| 6 ǫ}. Then there exists Cǫ > 0 such
that

(3.2) ‖Q̃ϕwu‖ > Cǫh
2m/(m+1)‖ϕwu‖, z ∈ [1− ǫ, 1 + ǫ].

Remark 3.3. In [CW11], it is also shown that this estimate is sharp in the sense
that the exponent 2m/(m+ 1) cannot be improved.
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3.3. Finitely degenerate inflection transmission trapping. We next study
the case when the potential has an inflection point of finitely degenerate type.
That is, let us assume the point x = 1 is a finitely degenerate inflection point, so
that locally near x = 1, the potential V0(x) = A−2(x) takes the form

V0(x) ∼ C−1
1 − c2(x− 1)2m2+1, m2 > 1

where C1 > 1 and c2 > 0. Of course the constants are arbitrary (chosen to agree
with those in [CM13]), and c2 could be negative without changing much of the
analysis. This Proposition and the proof are in [CM13], and as we will once again
revisit the proof of this Proposition in Subsection 3.5, we will omit it at this point.

But one last time, let us observe that since the lower bound on the operator Q̃ is of
the order h(4m2+2)/(2m2+3) ≫ h2, the estimate applies equally well to the operator

Q̃+ h2V1.

Proposition 3.4. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗
R) have compact

support in {|(x− 1, ξ)| 6 ǫ}. Then there exists Cǫ > 0 such that

(3.3) ‖Q̃ϕwu‖ > Cǫh
(4m2+2)/(2m2+3)‖ϕwu‖, z ∈ [C−1

1 − ǫ, C−1
1 + ǫ].

Remark 3.5. We remark that in this case, [CM13] shows once again that this
estimate is sharp in the sense that the exponent (4m2 + 2)/(2m2 + 3) cannot be
improved.

3.4. Unstable infinitely degenerate and cylindrical trapping. In this sub-
section, we study the case where the principal part of the potential V (x) = A−2(x)+
h2V1(x) has an infinitely degenerate maximum, say, at the point x = 0. Let
V0(x) = A−2(x). As usual, we again assume that V0(0) = 1, so that

V0(x) = 1−O(x∞)

in a neighbourhood of x = 0. Of course this is not very precise, as V0 could be
constant in a neighbourhood of x = 0 and still satisfy this, and the proof must be
modified to suit these two cases. So let us first assume that V0(0) = 1, and V ′

0(x)
vanishes to infinite order at x = 0, however, ±V ′

0(x) < 0 for ±x > 0. That is, the
critical point at x = 0 is infinitely degenerate but isolated.

Our microlocal spectral theory result is then that the microlocal cutoff resolvent
is bounded by Oη(h

−2−η) for any η > 0. In order to state the result, let

Q̃ = −h2∂2x + V (x)− z = −h2∂2x +A−2(x) + h2V1(x)− z.

Proposition 3.6. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗
R) have compact

support in {|(x, ξ)| 6 ǫ}. Then for any η > 0, there exists Cǫ,η > 0 such that

(3.4) ‖Q̃ϕwu‖ > Cǫ,ηh
2+η‖ϕwu‖, z ∈ [1− ǫ, 1 + ǫ].

Remark 3.7. As this is the limiting case as m→ ∞ of Proposition 3.2, we believe
the optimal lower bound in this case is h2/γ(h) for some γ(h) → 0. This is further
suggested by a microlocal scaling heuristic. However, various attempts to tighten
up the argument to get the better lower bound seem to fail. It would be very
interesting to determine if a lower bound of h2/γ(h) or even h2 holds.

For our next result, we consider the case where there is a whole cylinder of
unstable trapping. That is, we assume the principal part of the effective potential
V0(x) has a maximum V0(x) ≡ 1 on an interval, say x ∈ [−a, a], and that ±V ′

0(x) <
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0 for ±x > a. Our main result in this case says that the microlocal cutoff resolvent
is again controlled by h−2−η for any η > 0. Let us again set

Q̃ = −h2∂2x + V (x)− z.

Proposition 3.8. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗
R) have compact

support in {|x| 6 a + ǫ, |ξ| 6 ǫ}. Then for any η > 0, there exists Cǫ,η > 0 such
that

(3.5) ‖Q̃ϕwu‖ > Cǫ,ηh
2+η‖ϕwu‖, z ∈ [1− ǫ, 1 + ǫ].

Remark 3.9. For similar reasons, we expect the optimal lower bound in this case
should be h2.

Proof. The proof of these Propositions is very similar, so we put them together. We
will first prove Proposition 3.6, and then point out how the proof must be modified
to get Proposition 3.8.

The idea of the proof of Proposition 3.6 (and indeed Proposition 3.8) is to add
a small h-dependent bump with a finitely degenerate maximum, and then use the
result of Proposition 3.2. Of course the bump has to be sufficiently small that the

operator Q̃ is close to the perturbed operator.
Choose a point x0 = x0(h) > 0 and ǫ > 0 so that x0 is the smallest point such

that

−xV ′
0(x) >

h

̟(h)
, x0 6 |x| 6 ǫ,

where ̟(h) will be determined later. As long as ̟(h) ≫ h, this implies that
x0 = o(1). We remark that, of course, x0 depends also on the choice of ̟(h),
but for any ̟, there is such a choice, since V ′

0 vanishes to infinite order at x = 0.
Further, as V ′

0(x) = O(x∞) near x = 0, we have x0 ≫ hδ for any δ > 0. Fix m > 2
to be determined later in the proof (m will be large), and choose also an even
function f ∈ C∞

c ([−2, 2])∩ G0
τ for some τ <∞, with f(x) = 1− 1

2mx
2m for |x| 6 1,

and f ′(x) 6 0 or x ∈ [0, 2]. For another parameter Γ(h) > 0 to be determined, let

Wh(x) = Γ(h)f(x/x0),

and let

V0,h(x) = V0(x) +Wh(x)

and

Vh(x) = V (x) +Wh(x)

(see Figure 1). The parameter Γ(h) will be seen to be h2+η for η > 0, η = O(m−1)
as m→ ∞. By construction,

|V (x)− Vh(x)| 6 |Wh| 6 Γ(h).

Let Q1 = (hD)2 + Vh with symbol q1 = ξ2 + Vh. The Hamilton vector field H

associated to the symbol q1 is given by

H = 2ξ∂x − V ′
h∂ξ

= 2ξ∂x −
(
Γ(h)

x0
f ′(x/x0) + V ′

0(x) + h2V ′
1(x)

)
∂ξ.
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V0,h = 1 + Γ(h)

V0 = 1

x = 0 x = x0 x = 2x0

Figure 1. The potential V0 and the modified potential V0,h (in dashed).

We will use the same change of coordinates and the same singular commutant
as in [CW11], but we also have to track the loss coming from the coefficient Γ(h).
For α = 1/(m+ 1), let

Ξ =
ξ

(h/h̃)mα
, X =

x

(h/h̃)α
,

so that in the new blown-up coordinates Ξ, X,

(3.6) H = (h/h̃)
m−1
m+1

(
Ξ∂X − (h/h̃)(1−2m)/(m+1)V ′

h((h/h̃)
αX)∂Ξ

)

Let Λ(s) be defined as in [CW11] by fixing ǫ0 > 0 and setting

Λ(s) =

∫ s

0

〈z〉−1−ǫ0 dz,

so that Λ is a zero order symbol satisfying Λ(s) ∼ s for s near 0. Following
[Chr07,Chr11,CW11], we define

a(x, ξ;h) = Λ(Ξ)Λ(X)χ(x)χ(ξ) = Λ(ξ/(h/h̃)mα)Λ(x/(h/h̃)α)χ(x)χ(ξ),

where χ(s) is a cutoff function equal to 1 for |s| < δ1 and 0 for s > 2δ1 (δ1 will be
chosen shortly). Then a is bounded, and a 0 symbol in X,Ξ :

∣∣∣∂αX∂
β
Ξa
∣∣∣ 6 Cα,β .

(Recall that x = (h/h̃)αX and ξ = (h/h̃)mαΞ.) Using (3.6), it is simple to compute

(3.7)

H(a) =(h/h̃)
m−1
m+1χ(x)χ(ξ)

(
Λ(Ξ)〈X〉−1−ǫ0Ξ

− (h/h̃)(1−2m)/(m+1)Λ(X)V ′
h((h/h̃)

αX)〈Ξ〉−1−ǫ0
)
+ r

≡(h/h̃)
m−1
m+1 g + r

with
supp r ⊂ {|x| > δ1} ∪ {|ξ| > δ1}

(r comes from terms involving derivatives of χ(x)χ(ξ)).

For |X| 6 (h/h̃)−αx0, we have

−(h/h̃)(1−2m)/(m+1)Λ(X)V ′
h((h/h̃)

αX)〈Ξ〉−1−ǫ0

= Γ(h)x−2m
0 Λ(X)X2m−1〈Ξ〉−1−ǫ0 + g2,

with
g2 = −(h/h̃)(1−2m)/(m+1)Λ(X)(V ′

0 + h2V ′
1)((h/h̃)

αX)〈Ξ〉−1−ǫ0 .
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Note that we always have −Λ(x)V ′
0(x) > 0, so we expect the quantization of g2 to

be at least semibounded below. This is demonstrated in Lemma 3.11 below.
For |X| 6 (h/h̃)−αx0 and |Ξ| 6 (h/h̃)−αmδ1 consider

g =χ(x)χ(ξ)
(
Λ(Ξ)〈X〉−1−ǫ0Ξ

− (h/h̃)(1−2m)/(m+1)Λ(X)V ′
h((h/h̃)

αX)〈Ξ〉−1−ǫ0

=Λ(Ξ)Ξ〈X〉−1−ǫ0 + Γ(h)x−2m
0 Λ(X)X2m−1〈Ξ〉−1−ǫ0 + g2

=λ2
(
λ−1Λ(Ξ)(λ−1Ξ)〈X〉−1−ǫ0 + λ−2m−2Γx−2m

0 λΛ(X)(λX)2m−1〈Ξ〉−1−ǫ0
)
+ g2

=λ2
(
Λ̃1(Ξ

′)Ξ′〈λ−1X ′〉−1−ǫ0
+ λ−2m−2Γx−2m

0 Λ̃2(X
′)(X ′)2m−1〈λΞ′〉−1−ǫ0

)
+ g2

=:g1 + g2,

where we have used the L2-unitary rescaling

X ′ = λX, Ξ′ = λ−1Ξ,

and λ > 0 (small) will be determined in the course of the proof.

The functions Λ̃j , j = 1, 2, are defined by changing variables:

Λ̃1(Ξ
′) = λ−1Λ(Ξ) = λ−1Λ(λΞ′),

and

Λ̃2(X
′) = λΛ(X) = λΛ(λ−1X ′).

The error term g2 is the term in the expansion of g coming from estimating using
W ′

h rather than V ′
h. We will deal with g2 in due course. We are now microlocalized

on a set where

|X ′| 6 λ(h/h̃)−αx0, |Ξ′| 6 λ−1(h/h̃)−mαδ1,

and will be quantizing in the h̃-Weyl calculus, so we need symbolic estimates on
these sets.

If

|λ−1X ′| 6 δ1, and |λΞ′| 6 δ1,

and δ1 > 0 is sufficiently small, then Λ̃1(Ξ
′) ∼ Ξ′ and Λ̃2(X

′) ∼ X ′, so that g1 is
bounded below as follows:

(3.8) g1 > min
{
λ2, λ−2mΓx−2m

0

}
((Ξ′)2 + (X ′)2m).

Then the h̃-quantization of g1 is bounded below microlocally on this set by this
minimum times h̃2m/(m+1) (see [CW11, Lemma A.2]).

Now on the complementary set, we have one of either |λ−1X ′|1+ǫ0 or |λΞ′| is
larger than, say, (δ1/2)

1+ǫ0 . We also need to keep track of the relative size of these

two quantities. If |λΞ′| > max
(∣∣λ−1X ′∣∣1+ǫ0

, (δ1/2)
1+ǫ0

)
then

g1 > λ2Λ̃1(Ξ
′)Ξ′〈λ−1X ′〉−1−ǫ0

> cλ2Λ̃1(Ξ
′)

Ξ′

|λΞ′|
= cλΛ̃1(Ξ

′)sgn (Ξ′)

= cΛ(λΞ′)sgn (Ξ′)

> cδ1 .(3.9)
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Hence the h̃-quantization of g1 is bounded below by a positive constant, independent
of h and h̃ on this set.

The remaining set is a bit more difficult. If

∣∣λ−1X ′∣∣1+ǫ0
> max

(
|λΞ′|, (δ1/2)1+ǫ0

)
,

then

g1 > λ2
(
Λ̃1(Ξ

′)Ξ′
〈
(h/h̃)−αx0

〉−1−ǫ0

+ λ−2m−2Γx−2m
0 Λ̃2(X

′)(X ′)2m−1 〈λΞ′〉−(1+ǫ0)
)

= λ2
(
λ−1Λ(λΞ′)Ξ′

〈
(h/h̃)−αx0

〉−1−ǫ0

+ λ−2m−2Γx−2m
0 λΛ(λ−1X ′)(X ′)2m−1 〈λΞ′〉−(1+ǫ0)

)

= λ2
(
λ−1Λ(λΞ′)Ξ′

〈
(h/h̃)−αx0

〉−1−ǫ0

+ λ−2mΓx−2m
0 Λ(λ−1X ′)(X ′)2m−2(λ−1X ′) 〈λΞ′〉−(1+ǫ0)

)

>





cδ1 min{λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0 , λ−2m+2Γx−2m

0 }
×((Ξ′)2 + (X ′)2m−2), if |λΞ′| 6 (δ1/2)

1+ǫ0 ,

c′δ1(h/h̃)
α(1+ǫ0)x−1−ǫ0

0 , if |λΞ′| > (δ1/2)
1+ǫ0 .

(3.10)

We now optimize the minimum in (3.10) to determine λ in terms of the other
parameters:

λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0 = λ−2m+2Γx−2m

0 ,

or

λ2 = Γ1/m(h/h̃)−α(1+ǫ0)/mx
−2+(1+ǫ0)/m
0 .

Then the minimum is

λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0 = Γ1/m(h/h̃)α(1+ǫ0)(m−1)/mx

−3−ǫ0+(1+ǫ0)/m
0 ,

and the h̃-quantization of g1 on this set is bounded below microlocally by this
number times h̃2(m−1)/m (see [CW11, Lemma A.2]).

Remark 3.10. We pause to remark that here is one place where alternative meth-
ods to optimize the lower bounds give worse results. For example, on the set where

|λΞ′| 6 (δ1/2)
1+ǫ0 6 |λ−1X ′|1+ǫ0 ,

we could estimate g1 from below using only the second term. This gives a lower
bound of c′′δ1Γx

−2m
0 , which is much worse than that computed above.

Finally, recalling that eventually h̃ > 0 will be fixed and h≪ h̃, taking the worst
lower bound from (3.8) through (3.10), we obtain for a function u with h-wavefront

set contained in the set where |λ−1X ′| 6 (h/h̃)−αx0, |λΞ′| 6 (h/h̃)−mαδ1,

〈
Op h̃(g1)u, u

〉
> Γ1/m(h/h̃)α(1+ǫ0)(m−1)/mx

−3−ǫ0+(1+ǫ0)/m
0 h̃2(m−1)/m‖u‖2.
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On the other hand, if (h/h̃)−αx0 6 |X| 6 (h/h̃)−αδ1, we have

−(h/h̃)(1−2m)/(m+1)Λ(X)V ′
h((h/h̃)

αX)〈Ξ〉−1−ǫ0

= −(h/h̃)(1−2m)/(m+1)sgn (X)B(X)
|(h/h̃)αX|
|(h/h̃)αX|

V ′((h/h̃)αX)〈Ξ〉−1−ǫ0 + g3

> (h/h̃)(1−2m)/(m+1)

(
B(X)

|(h/h̃)αX|
h

̟(h)
−O(h2)

)
〈Ξ〉−1−ǫ0 + g3

> C
h(2−m)/(m+1)h̃(2m−1)/(m+1)

̟(h)
〈Ξ〉−1−ǫ0 + g3

> C
h(2−m)/(m+1)h̃(2m−1)/(m+1)

̟(h)
(h/h̃)(1+ǫ0)m/(1+m) + g3

> 2
h3/(m+1)h̃(m−1)/(m+1)

̟(h)
+ g3,(3.11)

where B(X) > c0 > 0. The second inequality holds provided h/̟ ≫ h2 (so that
h2V ′

1 is controlled by V ′
0), and the last inequality holds as h→ 0 provided ǫ0 < 1/m.

The error g3 > 0 comes from using V ′ in the expansion of g rather than W ′
h.

We now deal with the (nearly) positive error terms g2 and g3.

Lemma 3.11. The error terms g2 and g3 are semi-bounded below in the following
sense: if u(X) has wavefront set localized in

{|X| 6 ǫ(h/h̃)−1/(m+1), |Ξ| 6 ǫ(h/h̃)−m/(m+1)},
then for any δ > 0 and N > 0,

〈
Op h̃(gj)u, u

〉
> −CNh

(N−2)m/(m+1)−δh̃2m/(m+1)‖u‖2,
for j = 2, 3.

Proof. We prove the relevant bounds for x > 0. The analysis for x 6 0 is similar.
For g2, for N > 0 large, and δ > 0 small, choose 0 < x1 < x2 = o(1) satisfying

−x1V ′
0(x1) = hNm/(m+1)

and
−x2V ′

0(x2) = hNm/(m+1)−δ.

As usual, since V ′
0(x) = O(x∞), the points xj , j = 1, 2 satisfy xj ≫ hδ2 for any

δ2 > 0. The 0-Gevrey condition also implies |x2 − x1| ≫ hδ2 for any δ2 > 0 as well.
To see this, Taylor’s theorem says

(V ′
0(x2)− V ′

0(x1)) = V ′′
0 (ξ)(x2 − x1)

for some x1 6 ξ 6 x2. The 0-Gevrey condition and monotonicity near x = 0 implies

|V ′′
0 (ξ)| 6 |V ′′

0 (x2)| 6 C

∣∣∣∣
V ′
0(x2)

xτ2

∣∣∣∣ ,

so that

(V ′
0(x2)− V ′

0(x1)) 6 C

∣∣∣∣
V ′
0(x2)

xτ2

∣∣∣∣ (x2 − x1)

for some τ <∞, which in turn implies (recalling V ′
0 < 0 for x > 0 near 0)

(x2 − x1) > C ′V
′
0(x1)− V ′

0(x2)

|V ′
0(x2)|

xτ2 = xτ2

(
1−

∣∣∣∣
V ′
0(x1)

V ′
0(x2)

∣∣∣∣
)
.
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We claim ∣∣∣∣
V ′
0(x1)

V ′
0(x2)

∣∣∣∣ = o(1),

which will finish the proof that |x2 − x1| ≫ hδ2 for any δ2 > 0. For this, we write
∣∣∣∣
V ′
0(x1)

V ′
0(x2)

∣∣∣∣ =
∣∣∣∣x1

V ′
0(x1)

x2V ′
0(x2)

∣∣∣∣
x2
x1

= hδ
x2
x1
.

Writing x2 = x1+γ(h), we are trying to show γ(h) ≫ hδ2 for any δ2 > 0. For a fixed
δ2, if γ(h) ≫ hδ2 we’re done. If γ(h) < hδ2 , then we will produce a contradiction
(in fact showing that γ(h) ≫ hδ2). If γ(h) < hδ2 for this δ2, then

γ(h)

x1
≪ 1,

since x1 ≫ hδ2 . Then it follows that

hδ
x2
x1

= hδ
x1 + γ(h)

x1
≪ 2hδ = o(1).

Plugging into our earlier computation, we get

x2 − x1 = C ′xτ2(1− o(1)) ≫ C ′
δ3h

τδ3

for any δ3 > 0. Taking δ3 > 0 sufficiently small so that hτδ3 ≫ hδ2 implies

γ(h) = x2 − x1 ≫ hδ2 ,

which is a contradiction to our assumption that γ(h) 6 hδ2 .
Now let ψ(x) be a smooth function, ψ > 0, ψ(x) ≡ 1 on [0, x1] with ψ(x) ≡ 0

for x > x2. Assume also that |∂kxψ| 6 Ck|x2 − x1|−k = o(h−kδ2) for any δ2 > 0.

Let ψ̃(X) = ψ((h/h̃)αX), α = 1/(m+ 1), so that

|∂kX ψ̃| 6 Ck(h/h̃)
αk · o(h−kδ2).

We have
〈
Op h̃(g2)u, u

〉

=
〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉
+
〈
Op h̃(g2)ψ̃u, ψ̃u

〉

+ 2
〈
Op h̃(g2)ψ̃u, (1− ψ̃)u

〉
.

We estimate each term separately.
On the support of 1− ψ̃ (again recalling we are only looking at x > 0), we have

(h/h̃)1/(m+1)X > x1 so that in this region we can apply the 0-Gevrey condition to
V ′
1 to absorb h2V ′

1 into V ′
0 . Recall that V1 consists of quotients of derivatives of

A with powers of A. The function A is bounded above and below by a (positive)
constant for x small, so we are really only concerned with estimating a finite number
of derivatives of A. Then according to the 0-Gevrey condition, for any δ2 > 0, we
have for some s, τ <∞

h2|V ′
1((h/h̃)

αX)| 6 Ch2|x1|−sτ |A′((h/h̃)αX)|
6 Ch2−sτδ2 |V ′

0((h/h̃)
αX)|,
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and similarly for a finite number of derivatives of V1. By taking δ2 > 0 sufficiently
small we see that on the support of 1 − ψ̃, the quantization of V ′

0 controls that of
h2V ′

1 . That is, for h > 0 sufficiently small,
〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉

> −C
(
h

h̃

) (1−2m)
(m+1) 〈

Op h̃(Λ(X)V ′
0((h/h̃)

αX)〈Ξ〉−1−ǫ0)(1− ψ̃)u, (1− ψ̃)u
〉
.

Then we calculate in this region

(
h

h̃

)(1−2m)/(m+1)(
Λ(X)

(h/h̃)1/(m+1)X

)

×
(
−(h/h̃)1/(m+1)XV ′

0((h/h̃)
1/(m+1)X)

)
〈Ξ〉−1−ǫ0

= h(1−2m)/(m+1)h̃(2m−1)/(m+1)hNm/(m+1)A(X,h, h̃) 〈Ξ〉−1−ǫ0

where A is a symbol bounded below by a positive constant. This follows since

X >

(
h

h̃

)−α

x1

>

(
h

h̃

)−α

hδ2

for any δ2 > 0. Taking δ2 < α, this lower bound is (at least) a positive constant.

On the set where A 〈Ξ〉−1−ǫ0 > 1, this operator is bounded below, while on the
complement, we use the Sharp G̊arding inequality to get for any δ2 > 0

〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉

> −Cδ2 h̃h
((N−2)m+2)/(m+1)−2δ2 h̃(2m−2)/(m+1)‖(1− ψ̃)u‖2.

For the remaining two terms, on the support of ψ̃, we have 0 6 (h/h̃)1/(m+1)X 6 x2.
We know that |∂kxA| is an increasing function for small x, so that to estimate V ′

1 ,
we estimate a finite number of derivatives of A from above, we can estimate at the
right-hand endpoint x2. That is, we have as above for s, τ <∞ and any δ2 > 0,

h2|V ′
1((h/h̃)

αX)| 6 Ch2|x2|−sτ |V ′
0(x2)|

6 Ch2|x2|−sτ−1|x2V ′
0(x2)|

6 Ch2−δ2(1+sτ)hNm/(m+1)−δ

by our choice of x2. This implies that on the support of ψ̃, h2V ′
1 is controlled by a

large power of h, by taking δ2 > 0 sufficiently small. That is, in this region

g2 = (h/h̃)(1−2m)/(m+1)

[(
Λ(X)

(h/h̃)α)X

)(
−(h/h̃)αXV ′

0((h/h̃)
αX)

)

− h2Λ(X)V ′
1((h/h̃)

αX)

]
〈Ξ〉−1−ǫ0

= h−2m/(m+1)h̃(2m)/(m+1)hNm/(m+1)−δA1(X,h, h̃) 〈Ξ〉−1−ǫ0 ,
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where A1 is a function satisfying

|∂kXA1| 6 Ck,δ2(h
1/(m+1)−δ2 h̃−1/(m+1))k.

Hence if δ2 < 1/(m+ 1),
〈
Op h̃(g2)ψ̃u, ψ̃u

〉
= O(h(N−2)m/(m+1)−δh̃2m/(m+1))‖u‖2,

and similarly
〈
Op h̃(g2)ψ̃u, (1− ψ̃)u

〉
= O(h(N−2)m/(m+1)−δh̃2m/(m+1))‖u‖2.

The proof for g3 is the same (since we have assumed f ∈ C∞
c ∩ G0

τ for some
τ < ∞), but slightly easier, since g3 is the error term coming from Wh away from
x = 0, and Wh is already O(h2).

�

Let us recap what we have shown so far and fix some of the parameters. We
have perturbed our potential by a term of size Γ, which we want to be much smaller
than our lower bound on hOp h(H(a)). That is, we want to solve

h

(
h

h̃

)(m−1)/(m+1)

Γ1/m(h/h̃)α(1+ǫ0)(m−1)/mx
−3−ǫ0+(1+ǫ0)/m
0 h̃2(m−1)/m ≫ Γ.

As m will be large, ǫ0 < 1/m, and x0 = o(1), it suffices to solve

h
2m

m+1+
(m−1)(1+ǫ0)

m(m+1) h̃−
(m−1)
(m+1)

+2
(m−1)

m − (m−1)(1+ǫ0)

m(m+1)

= Γ(m−1)/m,

or

Γ = h2m
2/(m2−1)+(1+ǫ0)/(m+1)h̃2−m(m−1)/(m2−1)−(1+ǫ0)/(m+1).

This means that for this value of Γ, our lower bound on hOp h(H(a)) is

Γx
−3−ǫ0+(1+ǫ0)/m
0

= h2m
2/(m2−1)+(1+ǫ0)/(m+1)h̃2−m(m−1)/(m2−1)−(1+ǫ0)/(m+1)x

−3−ǫ0+(1+ǫ0)/m
0 .

Observe that the exponent of h is 2 + O(m−1) which can be made smaller than
2 + η for any η > 0 by taking m large.

We also have to choose the parameter ̟(h). For that we again match lower
bounds:

h3/(m+1)h̃(m−1)/(m+1)

̟(h)
= Γ1/m(h/h̃)α(1+ǫ0)(m−1)/mx

−3−ǫ0+(1+ǫ0)/m
0 h̃(2m−2)/m

= h2m/(m2−1)+(1+ǫ0)/(m+1)

× h̃4−2/m−(m−1)/(m2−1)−(1+ǫ0)/(m+1)x
−3−ǫ0+(1+ǫ0)/m
0 ,

or

̟(h) = h3/(m+1)−2m/(m2−1)−(1+ǫ0)/(m+1)

× h̃(m−1)/(m+1)−4+2/m+(m−1)/(m2−1)+(1+ǫ0)/(m+1)x
3+ǫ0−(1+ǫ0)/m
0 .

Taking m sufficiently large yields ̟(h) satisfying h/̟(h) = o(1), so ̟(h) ≫ h, as
required to determine x0(h) and fix all the parameters.
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All told, we have shown for a function u(X) with semiclassical wavefront set

localized in a set {|X| 6 ǫ(h/h̃)−1/(m+1), |Ξ| 6 ǫ(h/h̃)−m/(m+1)}

h(h/h̃)(m−1)/(m+1)
〈
Op h̃(g)u, u

〉

> CΓ(h)x
−3−ǫ0+(1+ǫ0)/m
0 ‖u‖2

+ h(h/h̃)(m−1)/(m+1)(
〈
Op h̃(g2)u, u

〉
+
〈
Op h̃(g3)u, u

〉
)

> Ch2m
2/(m2−1)+(1+ǫ0)/(m+1)h̃2−m(m−1)/(m2−1)−(1+ǫ0)/(m+1)

× x
−3−ǫ0+(1+ǫ0)/m
0 ‖u‖2

− C ′
N,δh̃

2m/(m+1)h(N−2)m/(m+1)−δh(h/h̃)(m−1)/(m+1)‖u‖2

> C ′′h2m
2/(m2−1)+(1+ǫ0)/(m+1)h̃2−m(m−1)/(m2−1)−(1+ǫ0)/(m+1)

× x
−3−ǫ0+(1+ǫ0)/m
0 ‖u‖2.

We note that with these parameter values, of course h/̟ = o(1), which implies in
turn that x0 = o(1), and since h/̟ ≫ h2, the estimate (3.11) holds, which closes
the argument.

This concludes the study of the principal term in the commutator expansion. Of
course we still have to control the lower order terms in the commutator expansion,
which we do in the following Lemma.

Lemma 3.12. The symbol expansion of [Q1, a
w] in the h-Weyl calculus is of the

form

[Q1, a
w] =Opw

h

(( ih
2
σ(Dx, Dξ;Dy, Dη)

)
(q1(x, ξ)a(y, η)− q1(y, η)a(x, ξ))|x=y,ξ=η

+ e(x, ξ) + r3(x, ξ)

)
,

where e satisfies

Opw
h (e) ≪ hOp h(H(a)).

Proof. Since everything is in the Weyl calculus, only the odd terms in the expo-
nential composition expansion are non-zero. Hence the h2 term is zero in the Weyl
expansion. Now according to Lemma 2.2 and the standard L2 continuity theorem
for h-pseudodifferential operators, we need to estimate a finite number of derivatives
of the error:
(3.12)

|∂γe2| 6 Ch3
∑

γ1+γ2=γ

sup
(x,ξ)∈T∗R

(y,η)∈T∗R

sup
|ρ|6M ,ρ∈N4

∣∣Γα,β,ρ,γ(D)(σ(D))3q1(x, ξ)a(y, η)
∣∣ .

However, since q1(x, ξ) = ξ2 + V0,h(x), we have

DxDξq1 = D3
ξq1 = 0,
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so that

σ(D)3q1(x, ξ)a(y, η)|x=y,ξ=η

= D3
xq1D

3
ηa|x=y,ξ=η

= −V ′′′
h (x)(h̃/h)3m/(m+1)Λ′′′((h̃/h)m/(m+1)η)

× Λ((h̃/h)1/(m+1)y)χ(y)χ(η) + r3,

where r3 is supported in {|(x, ξ)| > δ1}. Owing to the cutoffs χ(y)χ(η) in the defi-
nition of a (and the corresponding implicit cutoffs in q1), we only need to estimate
this error in compact sets. The derivatives hβ∂η and hα∂y preserve the order of e2
in h and increase the order in h̃, while the other derivatives lead to higher powers
in h/h̃ in the symbol expansion. Hence we need only estimate e2, as the derivatives
satisfy similar estimates.

In order to estimate e2, we again use conjugation to the 2-parameter calculus,
and at some point invoke the 0-Gevrey assumption. We have

‖Opw
h (e2)u‖ = ‖Th,h̃Opw

h (e2)T
−1

h,h̃
Th,h̃u‖ 6 ‖Th,h̃Opw

h (e2)T
−1

h,h̃
‖L2→L2‖u‖,

by unitarity of Th,h̃. But Th,h̃Opw
h (e2)T

−1

h,h̃
= Opw

h̃
(e2 ◦ B) and

e2 ◦ B = −h3V ′′′
h ((h/h̃)1/(m+1)X)(h̃/h)3m/(m+1)Λ′′′(Ξ)

× Λ(X)χ(x)χ(ξ) + r3 ◦ B,
where r3 is again microsupported away from the critical point (coming from the
derivatives on χ(x)χ(ξ). We recall that V ′′′

h (x) = V ′′′(x)+W ′′′
h (x), where Wh(x) =

Γ(h)f(x/x0). As f ∈ C∞
c , we know that

|W ′′′
h (x)| 6 CΓx−3

0 ,

and hence

|h3(h̃/h)3m/(m+1)Λ′′′(Ξ)Λ(X)W ′′′
h ((h/h̃)1/(m+1)X)(χ(x)χ(ξ)|

6 CΓh3/(m+1)h̃3m/(m+1)x−3
0 .

As for V , since V ′ ∈ G0
τ , for x close to 0 satisfying (in the rescaled coordinates)

|X| >
(
h

h̃

)−1/(m+1)+ǫ1

, ǫ1 > 0,

we have

|h3/(m+1)h̃3m/(m+1)V ′′′((h/h̃)1/(m+1)X)|(3.13)

6 Ch3/(m+1)h̃3m/(m+1)

∣∣∣∣∣

(
h

h̃

)1/(m+1)

X

∣∣∣∣∣

−2τ

|V ′
0((h/h̃)

1/(m+1)X)|

≪ h2/(m+1)+γ h̃3m/(m+1)|V ′
0((h/h̃)

1/(m+1)X)|
provided

2τǫ1 6
1

m+ 1
− γ,

for γ > 0 (which of course implies we must have γ < 1/(m+ 1)). This can clearly
be done for any τ <∞ by taking ǫ1 > 0 sufficiently small.
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We need to estimate (3.13) in terms of V ′
0(X) 〈Ξ〉−1−ǫ0 as (x, ξ) and (y, η) vary

in (3.12). That means we need to worry about large |Ξ|. If |Ξ| 6 δ1/2, say, then
(3.13) is trivially bounded by

h2/(m+1)+γ h̃3m/(m+1)|V ′
0((h/h̃)

1/(m+1)X)| 〈Ξ〉−1−ǫ0 .

If

|Ξ| > max{|X|1+ǫ0 , δ1/2},
then the function g1 > cδ1 , so there is nothing to prove in this region. On the other
hand, if

δ1
2

6 |Ξ| 6 |X|1+ǫ0 ,

then

|Ξ|−1
> |X|−1−ǫ0 ,

so that

〈Ξ〉−1−ǫ0 > 〈X〉−(1+ǫ0)
2

>

(
h

h̃

)α(1+ǫ0)
2

.

Then (3.13) is bounded by

Ch2/(m+1)+γ h̃3m/(m+1)|V ′
0((h/h̃)

1/(m+1)X)

(
h

h̃

)−α(1+ǫ0)
2

| 〈Ξ〉−1−ǫ0

≪ Ch1/(m+1)h̃m/(m+1)|V ′
0((h/h̃)

1/(m+1)X) 〈Ξ〉−1−ǫ0 ,

provided
(1 + ǫ0)

2

m+ 1
<

1

m+ 1
+ γ,

which is possible since we have already determined ǫ0 ≪ 1/(m + 1) and the only
restriction on γ was γ < 1/(m+ 1).

On the other hand, we have for

|X| 6
(
h

h̃

)−1/(m+1)+ǫ1

, ǫ1 > 0,

since V ′′′(x) = O(|x|∞), then

|V ′′′((h/h̃)1/(m+1)X)| = O(h∞).

The error term must be estimated in terms of hH(a). Recall that |Λ′′′(Ξ)| 6
C 〈Ξ〉−1−ǫ0 , so we have shown that the error is always controlled by

o(h1/(m+1)h̃m/(m+1)) 〈Ξ〉−1−ǫ0 |Λ(X)V ′
0,h((h/h̃)

1/(m+1)X)|+O(h∞) ≪ hH(a).

�

Finally, we are able to put things together. Let v = ϕwu, with ϕ chosen to
have support inside the set where χ(x)χ(ξ) = 1; thus the terms r and r3 above are
supported away from the support of ϕ. Then Lemma 3.12 yields

i〈[Q1 − z, aw]v, v〉
= h〈Opw

h (H(a))v, v〉+ 〈Opw
h (e2)u, u〉

> CΓx
−3−ǫ0+(1+ǫ0)/m
0 ‖v‖2

= Ch2m
2/(m2−1)+3ǫ0/(m

2−m)h̃m/(m+1)−3ǫ0/(m
2−m)x

−3−ǫ0+(1+ǫ0)/m
0 ‖v‖2,
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for h̃ sufficiently small. Here we have used the previously computed value of Γ. On
the other hand, we certainly have

∣∣〈[Q1 − z, aw]v, v〉
∣∣ 6 C‖(Q1 − z)v‖‖v‖,

hence

‖(Q1 − z)v‖ > CΓx
−3−ǫ0+(1+ǫ0)/m
0 ‖v‖.

We need yet compare Q̃ to Q1:

‖v‖
6 CΓ−1x

3+ǫ0−(1+ǫ0)/m
0 ‖(Q1 − z)v‖

6 CΓ−1x
3+ǫ0−(1+ǫ0)/m
0

(∥∥∥(Q̃− z)v
∥∥∥+ ‖(V0,h − V0)v‖

)

6 CΓ−1x
3+ǫ0−(1+ǫ0)/m
0

(∥∥∥(Q̃− z)v
∥∥∥+ Γ(h)‖v‖

)

6 CΓ−1x
3+ǫ0−(1+ǫ0)/m
0

∥∥∥(Q̃− z)v
∥∥∥+ o(1)‖v‖

provided that again ǫ0 is sufficiently small and m is sufficiently large. Then the
term with ‖v‖ can be moved to the left hand side to get (now freezing h̃ small and
positive)

‖v‖ 6 CΓ−1x
3+ǫ0−(1+ǫ0)/m
0

∥∥∥(Q̃− z)v
∥∥∥

6 Ch−2m2/(m2−1)−(1+ǫ0)/(m+1)
∥∥∥(Q̃− z)v

∥∥∥

= Ch−2−η
∥∥∥(Q̃− z)v

∥∥∥

for η = O(m−1). This is (3.4).
Lastly, we show how to modify the preceding argument in the case of Proposition

3.8. The main point is that the nonlinear rescaling in Γ (as part of λ) allows us to
use that Γ1/(m+1) ≫ Γ. The first step is to modify the function f and subsequently
Wh and V0,h. Since V0(x) ≡ 1 on an interval x ∈ [−a, a], with ±V ′

0(x) < 0 for
±x > a, we choose the point x0 > 0 so that

−xV ′
0(x) >

h

̟(h)
, a+ x0 6 x 6 a+ ǫ,

and similarly for −a− ǫ 6 x 6 −a−x0. Again we can assume that |x0 − a| = o(1).
Then choose f ∈ C∞

c (R) ∩ G0
τ for some τ < ∞, with f(x) = 1 − 1

2mx
2m for |x| 6

a+ x0, and f
′(x) 6 0 or x > 0, supp f ⊂ [−a− 2x0, a+ 2x0], satisfying

|∂kxf | 6 Ck|x0|−k.

For our next parameter, set Γ̃(h) = c0Γ(h) for a small constant c0 > 0 to be
determined, and Γ(h) the parameter computed in the case of the isolated infinitely
degenerate maximum. As before then we take

Wh(x) = Γ̃(h)f(x),

and let

V0,h(x) = V0(x) +Wh(x)

We then follow the same arguments as in the proofs of Proposition 3.2 and 3.6,
noting that the “smallness” assumption on the support of the microlocal cutoff ϕ
in the x direction was to control lower order terms in Taylor expansions. As the
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function V0 is constant and f(x) = 1 − x2m on [−a, a], the smallness assumption
translates into a small neighbourhood around [−a, a]. Hence in Proposition 3.8 we
have assumed that suppϕ ⊂ [−a − ǫ, a + ǫ]. All of the error terms are treated
similarly to the preceding proof. The only changes to check are that, since f is

no longer a function of x/x0, and Γ̃(h) = c0Γ, we need to solve (in the previous
notation):

h(h/h̃)(m−1)/(m+1)Γ̃1/m(h/h̃)α(1+ǫ0)(m−1)/mh̃2(m−1)/m ≫ Γ̃,

or

h(h/h̃)(m−1)/(m+1)(h/h̃)α(1+ǫ0)(m−1)/mh̃2(m−1)/m ≫ (c0Γ)
(m−1)/m,

which is true with our previous choice of Γ, provided c0 > 0 is sufficiently small
and independent of h.

As previously, we then have

‖(Q1 − z)v‖ > C−1c
1/m
0 h2m

2/(m2−1)+3ǫ0/(m
2−m)h̃m/(m+1)−3ǫ0/(m

2−m)‖v‖.
In order to save some space, let us denote

ω(h) = h2m
2/(m2−1)+3ǫ0/(m

2−m)h̃m/(m+1)−3ǫ0/(m
2−m).

Comparing Q̃ to Q1 now yields:

‖v‖ 6 Cc
−1/m
0 ω(h)−1‖(Q1 − z)v‖

6 Cc
−1/m
0 ω(h)−1

(∥∥∥(Q̃− z)v
∥∥∥+ ‖(V0,h − V0)v‖

)

6 Cc
−1/m
0 ω(h)−1

(∥∥∥(Q̃− z)v
∥∥∥+ Cc0ω(h)‖v‖

)

6 Cc
−1/m
0 ω(h)−1

∥∥∥(Q̃− z)v
∥∥∥+ Cc

(m−1)/m
0 ‖v‖.

Freezing h̃ > 0 and c0 > 0 sufficiently small, the term with ‖v‖ can be moved to
the left hand side to get

‖v‖ 6 Ch−2−η
∥∥∥(Q̃− z)v

∥∥∥

with η = O(m−1) once again. This is (3.5).
�

3.5. Infinitely degenerate and cylindrical inflection transmission trap-

ping. In this subsection, we study the microlocal spectral theory in a neighbour-
hood of infinitely degenerate and cylindrical inflection transmission trapping. This
is very similar to Subsection 3.4, but now the potential is assumed to be monotonic
in a neighbourhood of the critical value.

We begin with the case where the potential has an isolated infinitely degenerate
critical point of inflection transmission type. As in the previous subsection, we
write V (x) = A−2(x) + h2V1(x) and denote V0(x) = A−2(x) to be the principal
part of the potential. Let us assume the point x = 1 is an infinitely degenerate
inflection point, so that locally near x = 1, the potential takes the form

V0(x) ∼ C−1
1 − (x− 1)∞,

where C1 > 1. Of course the constant is arbitrary (chosen to again agree with
those in [CM13]). Let us assume that our potential satisfies V ′

0(x) 6 0 near x = 1,
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with V ′
0(x) < 0 for x 6= 1 so that the critical point x = 1 is isolated. The next

Proposition says that in this case the microlocal resolvent is bounded by O(h−2−η)
for any η > 0. Let

Q̃ = (hDx)
2 + V (x)− z.

Proposition 3.13. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗
R) have compact

support in {|(x − 1, ξ)| 6 ǫ}. Then for any η > 0, there exists C = Cǫ,η > 0 such
that

(3.14) ‖Q̃ϕwu‖ > Cǫh
2+η‖ϕwu‖, z ∈ [C−1

1 − ǫ, C−1
1 + ǫ].

On the other hand, if V ′
0(x) ≡ 0 on an interval, say x−1 ∈ [−a, a] with V ′

0(x) < 0
for x− 1 < −a and x− 1 > a, we do not expect anything better than Proposition
3.13. The next Proposition says that this is exactly what we do get. To fix an
energy level, assume V0 ≡ C−1

1 on [−a, a]. We again write

Q̃ = (hDx)
2 + V (x)− z.

Proposition 3.14. For ǫ > 0 sufficiently small, let ϕ ∈ S(T ∗
R) have compact

support in {|x− 1| 6 a+ ǫ, |ξ| 6 ǫ}. Then for any η > 0, there exists C = Cǫ,η > 0
such that

(3.15) ‖Q̃ϕwu‖ > Cǫh
2+η‖ϕwu‖, z ∈ [C−1

1 − ǫ, C−1
1 + ǫ].

Proof. The proof of these Propositions is again very similar, so we put them to-
gether. We will first prove Proposition 3.13, and then point out how the proof must
be modified to get Proposition 3.14.

The idea of the proof of Proposition 3.13 (and indeed Proposition 3.14) is to
“round off the corners” in an h-dependent fashion to obtain a finitely degenerate
inflection point, and then mimic the proof of Proposition 3.4.

Choose a point x0 = x0(h) > 0 and ǫ > 0 such that x0 is the smallest number
so that

−V ′
0(x) >

h

̟(h)
, x0 6 |x− 1| 6 ǫ,

where ̟(h) will be determined later. Similar considerations apply to choosing
the parameters here as in the previous subsection, but since we wrote that in
excruciating detail, we will leave out one or two details in this subsection. Fix
m2 > 1, and choose also an odd function f ∈ C∞

c ([−2, 2]) ∩ G0
τ for some τ < ∞,

with f(x) = −(x)2m2+1/(2m2 + 1) for |x| 6 1 and f(x), f ′(x) 6 0 for 0 6 x 6 2.
For another parameter Γ(h) to be determined, let

Wh(x) = Γ(h)f((x− 1)/x0),

and let

V0,h(x) = V0(x) +Wh(x)

and

Vh(x) = V (x) +Wh(x)

(see Figure 2). The parameter Γ(h) will be seen to be a constant multiple of h2+η,
where η > 0, η = O(m−1

2 ) as m2 → ∞ in the case of Proposition 3.13. As in the
previous subsection, Γ(h) will be a small constant times this power of h in the case
of Proposition 3.14. By construction,

|V0(x)− V0,h(x)| 6 |Wh| 6 Γ(h).
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x = 1 + 2x0

V0 = C1

x = 1 x = 1 + x0

Figure 2. The potential V0 and the modified potential V0,h (in dashed).

Let Q1 = (hD)2 + Vh with symbol q1 = ξ2 + Vh. The Hamilton vector field H

associated to the symbol q1 is given by

H = 2ξ∂x − V ′
h∂ξ

= 2ξ∂x −
(
Γ(h)

x0
f ′((x− 1)/x0) + V ′

0(x) + h2V ′
1(x)

)
∂ξ.

We will consider a commutant localizing in this region and singular at the critical
point in a controlled way: we introduce new variables

Ξ =
ξ

(h/h̃)β
, X − 1 =

x− 1

(h/h̃)α
,

with α, β > 0, α = 1/(m2+1), and α+β = 1 so that we may use the two-parameter
calculus.

We remark that in the new “blown-up” coordinates Ξ, X,

H = (h/h̃)β−α
(
2Ξ∂X − (h/h̃)α−2βV ′

h((h/h̃)
α(X − 1) + 1)∂Ξ

)
(3.16)

Now fix ǫ0 > 0 and set

Λ1(s) =

∫ s

0

〈s′〉−1−ǫ0 ds′

and

Λ2(s) = 1 +

∫ s

−∞
〈s′〉−1−ǫ0 ds′.

Λ1 is a bounded symbol which looks like s near 0, and Λ2 is a bounded symbol with
positive derivative for s near 0, and Λ2 > 1 everywhere.

We introduce the singular symbol

a(x, ξ;h) = Λ1(Ξ)Λ2(X − 1)χ(x− 1)χ(ξ)

= Λ1(ξ/(h/h̃)
β)Λ2((x− 1)/(h/h̃)α)χ(x− 1)χ(ξ),

where χ(s) is a cutoff function equal to 1 for |s| 6 δ1 and 0 for s > 2δ1 (δ1 will
be chosen shortly). Then a is bounded since we have restricted the domain of
integration to |(x− 1, ξ)| 6 δ1. Further, a satisfies the symbolic estimates:

∣∣∣∂~α
X∂

~β
Ξa
∣∣∣ 6 C~α,~β .
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(Recall that x− 1 = (h/h̃)α(X − 1) and ξ = (h/h̃)βΞ.) Using (3.16), it is simple to
compute

(3.17)

H(a) =(h/h̃)β−αχ(x− 1)χ(ξ)
(
2Λ1(Ξ)〈X − 1〉−1−ǫ0Ξ

− (h/h̃)α−2βV ′
h((h/h̃)

α(X − 1) + 1)〈Ξ〉−1−ǫ0Λ2(X − 1)
)
+ r

=:(h/h̃)β−αg + r

with

supp r ⊂ {|x− 1| > δ1} ∪ {|ξ| > δ1}
(r comes from terms involving derivatives of χ(x− 1)χ(ξ)).

For |X − 1| 6 (h/h̃)−αx0 we have

−(h/h̃)α−2βV ′
h((h/h̃)

α(X − 1) + 1)〈Ξ〉−1−ǫ0Λ2(X − 1)

= Γ(h)x
−(2m2+1)
0 (h/h̃)α(2m2+1)−2β(X − 1)2m2〈Ξ〉−1−ǫ0Λ2(X − 1) + g2,

with

g2 = −(h/h̃)α−2β(V ′
0 + h2V ′

1)((h/h̃)
α(X − 1) + 1)〈Ξ〉−1−ǫ0Λ2(X − 1).

Let us denote by g1 the part of g obtained in this fashion, microlocally in {|X−1| 6
(h/h̃)−αx0}:

g1 = g − g2

= 2Λ1(Ξ)〈X − 1〉−1−ǫ0Ξ

+ Γ(h)x
−(2m2+1)
0 (h/h̃)α(2m2+1)−2β(X − 1)2m2〈Ξ〉−1−ǫ0Λ2(X − 1).

For |X − 1| 6 (h/h̃)−αx0 and |Ξ| 6 (h/h̃)−βδ1 consider

g1 =2Λ1(Ξ)Ξ〈X − 1〉−1−ǫ0

+
Γ(h)

x2m2+1
0

(h/h̃)α(2m2+1)−2β(X − 1)2m2Λ2(X − 1)〈Ξ〉−1−ǫ0

=2Λ1(Ξ)Ξ〈X − 1〉−1−ǫ0

+
Γ(h)

x2m2+1
0

(h/h̃)α(X − 1)2m2Λ2(X − 1)〈Ξ〉−1−ǫ0 ,

where we have used α = 1/(m2+1). Continuing, and rescaling using the L2-unitary
rescaling

X ′ − 1 = λ(X − 1), Ξ′ = λ−1Ξ,

we get

g1 =λ2
(
2λ−1Λ1(Ξ)(λ

−1Ξ)〈X − 1〉−1−ǫ0

+ λ−2−2m2Γx−2m2−1
0 (h/h̃)αΛ2(X − 1)(λ(X − 1))2m2〈Ξ〉−1−ǫ0

)

=λ2
(
2λ−1Λ1(λΞ

′)Ξ′〈λ−1(X ′ − 1)
〉−1−ǫ0

+ λ−2−2m2Γx−2m2−1
0 (h/h̃)αΛ2(λ

−1(X ′ − 1))(X ′ − 1)2m2〈λΞ′〉−1−ǫ0
)
.

As in the previous subsection, the parameter λ > 0 will be seen to be a small
h-dependent parameter chosen to optimize lower bounds on g1 amongst several
different regions.
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The error term g2 is the term in the expansion of g coming from V ′ rather than
W ′

h. We will deal with g2 in due course. We are now microlocalized on a set where

|X ′ − 1| 6 λ(h/h̃)−αx0, |Ξ′| 6 λ−1(h/h̃)−βδ1,

and will be quantizing in the h̃-Weyl calculus, so we need symbolic estimates on
these sets.

If

|X ′ − 1| 6 λδ1, and |Ξ′| 6 λ−1δ1,

and δ1 > 0 is sufficiently small, then Λ1(λΞ
′) ∼ λΞ′ and Λ2(λ

−1(X ′ − 1)) ∼ 1, so
that g1 is bounded below by a multiple of

(3.18) min{λ2, λ−2−2m2Γ(h/h̃)α}((Ξ′)2 + (X ′ − 1)2m2).

Hence the h̃-quantization of g1 is bounded below by this minimum value times
h̃2m2/(m2+1) on this set (using [CW11, Lemma A.2]).

Now on the complementary set, if |λΞ′| > max
(∣∣λ−1(X ′ − 1)

∣∣1+ǫ0
, (δ1/2)

1+ǫ0
)

then

g1 > cλ2λ−1Λ1(λΞ
′)Ξ′〈λ−1(X ′ − 1)

〉−1−ǫ0

> cλsgn (Ξ′)Ξ′|λΞ′|−1

> c0

for some c0 > 0.

If
∣∣λ−1(X ′ − 1)

∣∣1+ǫ0
> max

(
|λΞ′|, (δ1/2)1+ǫ0

)
, we have two regions to consider.

The first, if |λΞ′| 6 (δ1/2)
1+ǫ0 (and using that |λ−1X ′| 6 (h/h̃)−αx0 in this region),

then

g1 > cλ2
(
(Ξ′)2(h/h̃)α(1+ǫ0)x−1−ǫ0

0

+ λ−2−2m2Γx−2m2−1
0 (h/h̃)α(X ′ − 1)2m2

)
(3.19)

> min{λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0 , λ−2m2Γx−2m2−1

0 (h/h̃)α}
× ((Ξ′)2 + (X ′ − 1)2m2).(3.20)

We optimize this by setting the two terms in the minimum equal:

λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0 = λ−2m2Γx−2m2−1

0 (h/h̃)α,

or

λ2+2m2 = Γ(h/h̃)−αǫ0x−2m2+ǫ0
0 ,

which yields in turn the lower bound

λ2(h/h̃)α(1+ǫ0)x−1−ǫ0
0

= Γ1/(m2+1)(h/h̃)−αǫ0/(m2+1)+α(1+ǫ0)x
(−2m2+ǫ0)/(m2+1)−1−ǫ0
0 .

Then according to [CW11, Lemma A.2], the h̃-quantization of (3.20) is bounded
below by

Γ1/(m2+1)(h/h̃)−αǫ0/(m2+1)+α(1+ǫ0)x
(−2m2+ǫ0)/(m2+1)−1−ǫ0
0 h̃2m2/(m2+1).
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On the other hand, if |λ−1(X ′ − 1)|1+ǫ0 > |λΞ′| > (δ1/2)
1+ǫ0 , then

g1 > csgn (Ξ′)λΞ′(h/h̃)α(1+ǫ0)x−1−ǫ0
0

> c(h/h̃)α(1+ǫ0)x−1−ǫ0
0 .(3.21)

We now again take the worst lower bound for (3.18)-(3.21) to get for a function
u with h-wavefront set localized in

|(X ′ − 1)| 6 λ(h/h̃)−αx0, |Ξ′| 6 λ−1(h/h̃)−βδ1,
〈
Op h̃(g1)u, u

〉

> cΓ1/(m2+1)h(1+ǫ0)/(m2+1)−ǫ0/(m2+1)2

× h̃2−(3+ǫ0)/(m2+1)+ǫ0/(m2+1)2x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 ‖u‖2.

Here we have used that α = 1/(m2 + 1).

On the other hand, if |λ−1(X ′ − 1)| > (h/h̃)−αx0, we use the assumed lower
bound on V ′

0 to estimate g from below. Examining the potential terms, we have

−(h/h̃)α−2βV ′
h((h/h̃)

αX)〈Ξ〉−1−ǫ0Λ2(X − 1)
)

= −(h/h̃)α−2βV ′((h/h̃)αX)〈Ξ〉−1−ǫ0Λ2(X − 1)
)
+ g3

> C(h/h̃)α−2β h

̟(h)
(h/h̃)(1+ǫ0)β + g3

= C
h2α+ǫ0β h̃β−α−ǫ0β

̟(h)
+ g3,(3.22)

assuming that h/̟(h) ≫ h2 so that V ′
0 controls h2V ′

1 (this will be verified later).
The error g3 > 0 comes from using V ′ in the expansion of g rather than W ′

h.
We now deal with the (nearly) positive error terms g2 and g3.

Lemma 3.15. The error terms g2 and g3 are semi-bounded below in the following
sense: if u(X) has wavefront set localized in

{|X − 1| 6 ǫ(h/h̃)−α, |Ξ| 6 ǫ(h/h̃)−β},
then for any δ > 0 and N > 0,

〈
Op h̃(gj)u, u

〉
> −CNh

(N+1)α−2β−δh̃2β−α‖u‖2,
for j = 2, 3.

Proof. We prove the relevant bounds for x > 1. The analysis for x 6 1 is similar.
For g2, for N > 0 large, and δ > 0 small, choose 1 < x1 < x2 = 1 + o(1) satisfying

−V ′
0(x1) = hNα

and
−V ′

0(x2) = hNα−δ.

As usual, since V ′
0(x) = O((x − 1)∞), the points xj , j = 1, 2 satisfy xj − 1 ≫ hδ1

for any δ1 > 0. As before, the 0-Gevrey condition also implies |x2 − x1| ≫ hδ1 for
any δ1 > 0 as well.

Now let ψ(x) be a smooth function, ψ > 0, ψ(x) ≡ 1 on [1, x1] with ψ(x) = 0
for x > x2. Assume also that |∂kxψ| 6 Ck|x2 − x1|−k = o(h−kδ1) for any δ1 > 0.

Let ψ̃(X) = ψ((h/h̃)αX) so that

|∂kX ψ̃| 6 Ck(h/h̃)
αk|x2 − x1|−k = o(hk(α−δ1)h̃−αk).
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We have
〈
Op h̃(g2)u, u

〉

=
〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉
+
〈
Op h̃(g2)ψ̃u, ψ̃u

〉

+ 2
〈
Op h̃(g2)ψ̃u, (1− ψ̃)u

〉
.

We estimate each term separately.
On the support of 1−ψ̃ (recalling once again that we are restricting our attention

to x > 1), we have (h/h̃)αX > x1 so that in this region we can once again appeal
to the 0-Gevrey condition to control V ′

1 . As discussed previously, V1 consists of
quotients of derivatives of the function A with powers of A. As A is bounded above
and below for x small, we again use the 0-Gevrey condition to write for any δ1 > 0
and for some s, τ <∞,

h2|V ′
1((h/h̃)

α(X − 1) + 1)| 6 Ch2|x1|−sτ |A′((h/h̃)α(X − 1) + 1)|
6 Ch2−sτδ1 |V ′

0((h/h̃)
α(X − 1) + 1)|,

and similarly for a finite number of derivatives of V1. Taking δ1 > 0 sufficiently
small, we see that on the support of 1 − ψ̃, V ′

0 controls h2V ′
1 . That is, for h > 0

sufficiently small,
〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉

= −(h/h̃)α−2β
〈
Op h̃((V

′
0 + h2V ′

1)〈Ξ〉−1−ǫ0Λ2(X − 1))(1− ψ̃)u, (1− ψ̃)u
〉

> −1

2
(h/h̃)α−2β

〈
Op h̃(V

′
0〈Ξ〉−1−ǫ0Λ2(X − 1))(1− ψ̃)u, (1− ψ̃)u

〉
.

Here to save space (and since it will be integrated out anyway) we suppressed
the argument of V0 and V1; both functions are understood to be evaluated at
((h/h̃)α(X − 1) + 1). Then in this same region we have:

−(h/h̃)α−2βΛ2(X − 1)V ′
0((h/h̃)

α(X − 1) + 1) 〈Ξ〉−1−ǫ0

= (h/h̃)α−2βhNαA(X,h, h̃) 〈Ξ〉−1−ǫ0

where A is a symbol bounded below by a positive constant. On the set where
A 〈Ξ〉−1−ǫ0 > 1, this operator is bounded below, while on the complement, we use
the Sharp G̊arding inequality to get for any δ1 > 0

〈
Op h̃(g2)(1− ψ̃)u, (1− ψ̃)u

〉
> −Cδ1 h̃h

Nα+2α−2β−δ1 h̃2β−2α‖(1− ψ̃)u‖2.

For the remaining two terms, on the support of ψ̃, we have 1 6 (h/h̃)αX 6 x2, so
that in order to estimate V ′

1 , we need to estimate a finite number of derivatives of A
from above. But we know that for k > 1, |∂kxA| is an increasing function for x > 1
in a small neighbourhood. Hence we can estimate the size of V ′

1 by estimating it
at x2. For this, we once again use the 0-Gevrey assumption to get for any δ1 > 0
and for some s, τ <∞

h2|V ′
1((h/h̃)

α(X − 1) + 1)| 6 Ch2|x2|−sτ |V ′
0(x2)|

6 Ch2−δ1sτhNm/(m+1)−δ,
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by our choice of x2. This shows that on the support of ψ̃, h2V ′
1 is controlled by a

large power of h. Then in this region

g2 = −(h/h̃)α−2βΛ2(X)V ′((h/h̃)αX) 〈Ξ〉−1−ǫ0

= (h/h̃)α−2βhNα−δA1(X,h, h̃) 〈Ξ〉−1−ǫ0 ,

where A1 is a function satisfying

|∂kXA1| 6 Ck,δ1(h
α−δ1 h̃−α)k.

Hence if δ1 < α,
〈
Op h̃(g2)ψ̃u, ψ̃u

〉
= O(h(N+1)α−2β−δh̃2β−α)‖u‖2,

and similarly
〈
Op h̃(g2)ψ̃u, ψ̃u

〉
= O(h(N+1)α−2β−δh̃2β−α)‖u‖2.

As in Lemma 3.11, the proof for g3 is the same.
�

We are now in position again to fix some of the parameters. We start with
Γ, which we again want to be much smaller than our computed lower bound on
hOp h(H(a)). We need to solve

h(h/h̃)(m2−1)/(m2+1)Γ1/(m2+1)h(1+ǫ0)/(m2+1)−ǫ0/(m2+1)2

× h̃2−(3+ǫ0)/(m2+1)+ǫ0/(m2+1)2x
−3−ǫ0+(2+ǫ0)/(m2+1)
0

≫ Γ

Again, m2 > 0 will be large, ǫ0 > 0 is small, and x0 > 0 is o(1), so it suffices to
solve

h2−(1−ǫ0)/(m2+1)−ǫ0/(m2+1)2

× h̃2−(m2−1)/(m2+1)−(3+ǫ0)/(m2+1)+ǫ0/(m2+1)2

= Γm2/(m2+1),

or

Γ = h2+1/m2+ǫ0/m2−ǫ0/m2(m2+1)h̃1−ǫ0/m2+ǫ0/m2(m2+1)

Then for this value of Γ, our lower bound on hOp h(H(a)) is

Γx
−3−ǫ0+(2+ǫ0)/(m2+1)
0

= h2+2/m2−(1−ǫ0)/m2−ǫ0/m2(m2+1)

× h̃2+2/m2−(m2−1)/m2−(3+ǫ0)/m2+ǫ0/m2(m2+1)

× x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 .

We again observe that in this case, the exponent of h is 2 +O(m−1
2 ), which can be

made smaller than 2 + η for any η > 0.
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We can now choose the parameter ̟(h) as well, again by matching:

h2α+ǫ0β h̃β−α−ǫ0β

̟(h)

= Γ1/(m2+1)h(1+ǫ0)/(m2+1)−ǫ0/(m2+1)2

× h̃2−(3+ǫ0)/(m2+1)+ǫ0/(m2+1)2x
−3−ǫ0+(2+ǫ0)/(m2+1)
0

= h
3m2+1

m2
2
+m2

+
ǫ0

m2+1

× h̃2−
2

m2+1−
ǫ0

m2+1

× x
−3−ǫ0+

(2+ǫ0)

(m2+1)

0 ,

or

̟(h) = hγ1 h̃γ2x
3+ǫ0−(2+ǫ0)/(m2+1)
0 ,

where

γ1 = − 1

m2
+ ǫ0

(
m2 − 1

m2 + 1

)

and

γ2 = −1− ǫ0

(
m2 − 1

m2 + 1

)
.

All told, we have shown for a function u(X) with semiclassical wavefront set

localized in a set {|X − 1| 6 ǫ(h/h̃)−α, |Ξ| 6 ǫ(h/h̃)−β} (again using Lemma 3.15
to bound the g2 and g3 terms)

h(h/h̃)(m2−1)/(m2+1)
〈
Op h̃(g)u, u

〉

> cΓ(h)x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 ‖u‖2

+ h(h/h̃)(m2−1)/(m2+1)(
〈
Op h̃(g2)u, u

〉
+
〈
Op h̃(g3)u, u

〉
)

> c(1− o(1))h2+2/m2−(1−ǫ0)/m2−ǫ0/m2(m2+1)

× h̃2+2/m2−(m2−1)/m2−(3+ǫ0)/m2+ǫ0/m2(m2+1)

× x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 ‖u‖2.

As in the previous subsection, we have h/̟ = o(1), so that x0 = o(1), and
h/̟ ≫ h2 so that (3.22) holds, which closes this part of the argument.

This concludes the study of the principal term in the commutator expansion. Of
course we still have to control the lower order terms in the commutator expansion,
which we do in the following Lemma. This is where it becomes very important that
α = 1/(m2 + 1) > 0.

Lemma 3.16. The symbol expansion of [Q1, a
w] in the h-Weyl calculus is of the

form

[Q1, a
w] =Opw

h

(( ih
2
σ(Dx, Dξ;Dy, Dη)

)
(q1(x, ξ)a(y, η)− q1(y, η)a(x, ξ))|x=y,ξ=η

+ e(x, ξ) + r3(x, ξ)

)
,
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where e satisfies
Opw

h (e) ≪ hOp h(H(a)).

Proof. Since everything is in the Weyl calculus, only the odd terms in the expo-
nential composition expansion are non-zero. Hence the h2 term is zero in the Weyl
expansion. Now according to Lemma 2.2 and the standard L2 continuity theorem
for h-pseudodifferential operators, we need to estimate a finite number of derivatives
of the error:

|∂γe2| 6 Ch3
∑

γ1+γ2=γ

sup
(x,ξ)∈T∗R

(y,η)∈T∗R

sup
|ρ|6M ,ρ∈N4

∣∣Γα,β,ρ,γ(D)(σ(D))3q1(x, ξ)a(y, η)
∣∣ .

However, since q1(x, ξ) = ξ2 + Vh(x), we have

DxDξq1 = D3
ξq1 = 0,

so that

σ(D)3q1(x, ξ)a(y, η)|x=y,ξ=η

= D3
xq1D

3
ηa|x=y,ξ=η

= −V ′′′
h (x)(h̃/h)2βΛ′′′

1 ((h̃/h)βη)

× Λ2((h̃/h)
αy)χ(y)χ(η) + r3,

where r3 is supported in {|(x, ξ)| > δ1}. Owing to the cutoffs χ(y)χ(η) in the defi-
nition of a (and the corresponding implicit cutoffs in q1), we only need to estimate
this error in compact sets. The derivatives hβ∂η and hα∂y preserve the order of e2
in h and increase the order in h̃, while the other derivatives lead to higher powers
in h/h̃ in the symbol expansion. Hence we need only estimate e2, as the derivatives
satisfy similar estimates.

In order to estimate e2, we again use conjugation to the 2-parameter calculus,
and at some point invoke the 0-Gevrey assumption. We have

‖Opw
h (e2)u‖ = ‖Th,h̃Opw

h (e2)T
−1

h,h̃
Th,h̃u‖ 6 ‖Th,h̃Opw

h (e2)T
−1

h,h̃
‖L2→L2‖u‖,

by unitarity of Th,h̃. But Th,h̃Opw
h (e2)T

−1

h,h̃
= Opw

h̃
(e2 ◦ B) and

e2 ◦ B = −h3V ′′′
h ((h/h̃)αX)(h̃/h)3βΛ′′′

1 (Ξ)

× Λ2(X)χ(x)χ(ξ) + r3 ◦ B,
where r3 is again microsupported away from the critical point (coming from the
derivatives on χ(x)χ(ξ). We recall that V ′′′

h (x) = V ′′′(x)+W ′′′
h (x), where Wh(x) =

Γ(h)f((x − 1)/x0). As f ∈ C∞
c , and we have already computed the value Γ, we

know that
|W ′′′

h (x)| 6 CΓx−3
0 ,

and hence

|h3(h̃/h)3βΛ′′′
1 (Ξ)Λ2(X)W ′′′

h ((h/h̃)αX)(χ(x)χ(ξ)| 6 CΓh3αh̃3βx−3
0

= o(Γ(h)x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 ),

which is little-o of our computed lower bound on the quantization hOp h(H(a)).
As for V , since V ′ ∈ G0

τ , for x close to 1 satisfying (in the rescaled coordinates)

|X − 1| >
(
h

h̃

)−α+ǫ1

, ǫ1 > 0,
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|h3αh̃3βV ′′′((h/h̃)αX)| 6 Ch3αh̃3β
∣∣∣∣
(
h

h̃

)α

(X − 1)

∣∣∣∣
−2τ

|V ′((h/h̃)αX)|

≪ h2α+γ h̃3β |V ′((h/h̃)αX)|
provided ǫ1 > 0 is sufficiently small (as in the proof of Lemma 3.12). We also
follow again the proof of Lemma 3.12 to break the analysis into several regions.
The details are precisely the same.

On the other hand, we have for

|X − 1| 6
(
h

h̃

)−α+ǫ1

, ǫ1 > 0,

since V ′′′
0 (x) = O(|x− 1|∞), then

|V ′′′
0 ((h/h̃)αX)| = O(h∞).

The error term must be estimated in terms of hH(a); we have shown that the
error is always controlled by

o(Γ(h)x
−3−ǫ0+(2+ǫ0)/(m2+1)
0 )

+ o(hαh̃β)|V ′
0,h((h/h̃)

αX) 〈Ξ〉−1−ǫ0 |+O(h∞),

which, when quantized, is controlled by little-o of our computed lower bound on
the quantization hOp h(H(a)).

�

The rest of the proof of Proposition 3.13 follows exactly as in the proof of Propo-
sition 3.6.

Lastly, we show how to modify the preceding argument in the case of Proposition
3.14. The first step is to modify the function f and subsequentlyWh and V0,h. Since
V0(x) ≡ 1 on an interval x−1 ∈ [−a, a], with V ′

0(x) < 0 for ±(x−1) > a, we choose
the point x0 > 0 to be the smallest number so that

−V ′
0(x) >

h

̟(h)
, x0 6 x− 1− a 6 ǫ

and similarly for −ǫ 6 x − 1 + a 6 −x0. We choose also the same parameter
̟(h) as for Proposition 3.14. Again we can assume that x0 = o(1). Then choose
f ∈ C∞

c (R) ∩ G0
τ for some τ < ∞, with f(x) = −x2m2+1 for |x| 6 a + x0, and

f ′(x) 6 0 for x > 0, supp f ⊂ [−a− 2x0, a+ 2x0], satisfying

|∂kxf | 6 Ckx
−k
0 .

Following the proof of Proposition 3.8, we set the parameter Γ̃(h) = c0Γ(h) for
a small constant c0 > 0 to be determined, and where Γ(h) was computed in the
course of the proof of Proposition 3.13. As in the proof of Proposition 3.8, we then
take

Wh(x) = Γ̃(h)f((x− 1)),

and let

Vh(x) = V (x) +Wh(x)

We then follow the same arguments as in the proofs of Propositions 3.6 and 3.13,
noting that the “smallness” assumption on the support of the microlocal cutoff ϕ
in the x direction was to control lower order terms in Taylor expansions. As the
function V0 is constant and f(x) = 1−x2m2+1 on [−a, a], the smallness assumption
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Vmin + 2δ

Vmin

b−a− ǫ
−a

Vmin + δ

Figure 3. The potential V0 near a local min, and the choice of
parameters δ, −a, b, and ǫ.

translates into a small neighbourhood around [1 − a, 1 + a]. Hence in Proposition
3.14 we have assumed that suppϕ ⊂ [1 − a − ǫ, 1 + a + ǫ]. All of the error terms
are treated similarly to the preceding proof. Then the same rescaling argument as
in the proof of Proposition 3.8 proves Proposition 3.14.

�

3.6. Stable trapping and quasimodes. Suppose V0(x) has an “honest” local
minimum at x = 0 in the sense that V0 is eventually increasing as one moves to the
left or right of x = 0. That is, V0(0) = Vmin, V

′
0(0) = 0, ±V ′

0(x) > 0 for ±x > 0
near 0, and if {

x+ > 0

x− 6 0

are the smallest positive/negative values with V ′
0(x) 6= 0 for ±x > ±x±, then

±V ′(x) > 0 for ±x > ±x± in some neighbourhood. This means there exists δ > 0
such that for each y ∈ [Vmin, Vmin + 2δ], the sets {x : V0(x) 6 y} have a non-empty
compact connected component containing x = 0. By shrinking δ > 0 if necessary,
we may also assume that V0(x) is a convex function on the connected component
containing x = 0.

Let −a < 0 be the largest negative number such that V0(−a) = Vmin + δ, and
let b > 0 be the smallest positive number such that V0(b) = Vmin + δ. By again
shrinking δ > 0 if necessary, we may assume that V ′

0(−a) < 0 and V ′
0(b) > 0.

Choose also ǫ > 0 such that V0(−a− ǫ) > Vmin +3δ/2 and V0(b+ ǫ) > Vmin +3δ/2
(again shrinking δ > 0 if necessary). Figure 3 is a picture of the setup.

Let

Ṽ (x) =

{
V (x) = V0(x) + h2V1(x), x ∈ [−a− ǫ, b+ ǫ],

βx2, |x| ≫ 1,

where β > 0 is an appropriate constant so that Ṽ can be assumed convex. In

particular, we may assume that Ṽ −1(E) ⊂ [−a, b] for E ∈ [Vmin+ δ/2, Vmin+2δ/3],
by taking h > 0 sufficiently small.

Let L = (hDx)
2 + Ṽ (x). For h > 0 sufficiently small, Weyl’s law implies there

exists ∼ h−1 eigenvalues E of the operator L in the interval E ∈ [Vmin+δ/2, Vmin+
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2δ/3]. Fix such an eigenvalue, and let ϕ(x) be the (normalized) associated eigen-
function. Then, since E ∈ [Vmin + δ/2, Vmin + 2δ/3], we have in particular that

ϕ(x) = O(h∞), x 6 −a, x > b.

Let χ(x) ∈ C∞
c (R) be a smooth function such that χ(x) ≡ 1 on [−a, b] with support

in [−ǫ− a, b+ ǫ]. Thus,

χ(x)ϕ(x) = ϕ(x) +O(h∞),

and

Lχϕ = χLϕ+ [L, χ]ϕ

= Eχϕ+O(h∞),

since [L, χ] is supported on the set where ϕ = O(h∞).

But since Ṽ = V on the set [−a− ǫ, b+ ǫ], we also have

((hDx)
2 + V (x))χϕ = Eχϕ+O(h∞).

As ‖χϕ‖ = 1−O(h∞), we have

‖((hDx)
2 + V (x)− E)χϕ‖ = O(h∞)‖χϕ‖,

and so evidently for any N , there exists CN such that for any compactly supported
function χ̃ such that χ̃ = 1 on suppχ,

(3.23) ‖χ̃((hDx)
2 + V (x)− E)−1χ̃χϕ‖ > CNh

−N‖χϕ‖.
Remark 3.17. Of course, if we know more about the structure of the function
V0(x) near an honest local minimum, then we can say more. For example, we can
construct WKB approximations as quasimodes, and then stationary phase can tell
us much more detailed information about the quasimodes. However indirect, the
Weyl law method presented here is in a sense more robust, and does not really
require intimate knowledge of V0(x) near the minimum.

4. Proof of Theorem 1

We are now able to prove Theorem 1. Since we have assumed that the trapped
set has only finitely many connected components, this implies that the function
A(x) has only finitely many critical values, which consequently occur in a compact
set. Let A1, A2, . . . Ak be the critical values, and let Kl = {A(x) = Al} be the
critical sets. There are two cases to consider.

Case 1: The function V0(x) = A−2(x) has a local minimum. Then apply (3.23)
to conclude there are highly localized quasimodes, and the resolvent therefore blows
up faster than any polynomial (at least along a subsequence).

Case 2: The function V0(x) = A−2(x) has no minima. In this case, each critical
value of the function A−2(x) is of either unstable or transmission inflection type
(whether infinitely degenerate or not). The important thing to observe is that there
are only finitely many critical values, and they are all isolated in the two-dimensional
phase space in the following sense: if Kl is disconnected for some l, then assume Kl

has only two connected components (the finite case being similar). The connected
components of Kl are separated by a maximum, say Kj (or minimum, but this
would be Case 1). The stable and unstable manifolds associated to the flow around
Kj form a global separatrix, separating the complete flowouts of the two components
of Kl. This allows us to microlocalize and glue together the trapping estimates
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examined in detail in Subsections 3.1-3.5 (see Appendix A, [Chr08], [CM13], and
[DV12]). The rest of the proof proceeds precisely as in the proof of [CW11, Theorem
2].

5. Proof of Corollary 1.5

In this section, we recall the functional theoretic argument which connects resol-
vent estimates to local smoothing estimates, and in the process prove Corollary 1.5.
The technique is often called a “TT ∗” argument, however we have already used T
in our time interval, so instead we use an AA∗ argument.

Let u0 ∈ S(X) and χ ∈ C∞
c (X) and let A be the operator

Au0 = χeit∆u0,

acting on L2(X). We want to show

A : L2(X) → L2([0, T ];Hs(X))

for some s > 0 is bounded. By duality, this is equivalent to the adjoint A∗ being
bounded

A∗ : L2([0, T ];H−s(X)) → L2(X),

which is equivalent to the boundedness of the composition

AA∗ : L2([0, T ];H−s(X)) → L2([0, T ];Hs(X)).

Computing directly, we get

AA∗f(t) =

∫ T

0

χei(t−τ)∆χf(τ)dτ.

Now let u be defined by

u(x, t) =

∫ T

0

ei(t−τ)∆χf(τ)dτ.

Since we are only interested in the time interval [0, T ], we extend f to be 0 for
t /∈ [0, T ]. We write

AA∗f(t) =

∫ t

0

χei(t−τ)∆χf(τ)dτ +

∫ T

t

χei(t−τ)∆χf(τ)dτ

=: χu1(t) + χu2(t),

and calculate

(Dt −∆)uj = (−1)jiχf.(5.1)

Thus boundedness of AA∗ will follow if we prove u satisfying (5.1) satisfies

‖χu‖L2([0,T ];Hs) 6 ‖f‖L2([0,T ];H−s).

Replacing ±if with f in equation (5.1) and taking the Fourier transform in time,

t 7→ z, results in the following equation for û and f̂ :

(z −∆)û(z, ·) = χf̂(z, ·).(5.2)

Since f(t, ·) is supported only in [0, T ], f̂(z, ·) and û(z, ·) are holomorphic, bounded,
and satisfy (5.2) in { Im z < 0}. Let z = τ − iη, η > 0 sufficiently small. Since the
Fourier transform is an L2H isometry for any Hilbert space H, we want to estimate

‖χû(z, ·)‖Hs(X) 6 C‖f̂(z, ·)‖H−s(X)
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uniformly in z.
For this, we observe that if we know

‖χ(−∆+ z)−1χ‖L2→L2 6 C|z|−r

for some r > 0 and Im z = −η < 0 fixed, then a standard interpolation argument
gives

‖χ(−∆+ z)−1χ‖L2→H2 6 C|z|1−r,

and hence
‖χ(−∆+ z)−1χ‖L2→H2r 6 C.

Interpolating again, we get

‖χ(−∆+ z)−1χ‖H−r→Hr 6 C.

Thus

‖χu‖L2([0,T ];Hr(X)) 6 eηT ‖e−ηtχu(t)‖L2([0,T ];Hr(X))

6 CeηT ‖χû(τ − iη)‖L2(R;Hr(X))

6 CeηT ‖f̂(τ − iη)‖L2(R;H−r(X))

6 CeηT ‖e−ηtf(t)‖L2([0,T ];H−r(X))

6 CeηT ‖f(t)‖L2([0,T ];H−r(X)).

Hence
∫ T

0

‖χu‖2Hr(X)dt 6 CeηT
∫ T

0

‖f‖2H−r(X)dt,

or AA∗ is bounded.
We remark in passing that this argument works for any r > 0, along a strip

where Im z = −η < 0. If we examine the case where ‖χ(−∆+ z)−1χ‖L2→L2 blows
up as Im z → 0 (as in Case 2 of Theorem 1), we can use instead the trivial bound

‖χ(z −∆)χ‖L2→L2 6
1

| Im z| =
1

η

in this case to get a zero derivative smoothing effect. But of course we already knew
such an estimate must be true (even without spatial cutoffs) from the L2(X) con-
servation law. The point is that the blowup of the resolvent is perfectly consistent
with our physical intuition in this problem.

6. An Application: Spreading of Quasimodes for some Partially

Rectangular Billiards

In this section, we apply the microlocal estimates proved in the previous sections
to prove a spreading result for rather weak quasimodes for the Laplacian in partially
rectangular billiards. The main result is that if a partially rectangular billiard opens
“outward” in at least one wing, then any O(λ−ǫ) quasimode must spread to outside
of any O(λ−ǫ) neighbourhood of the rectangular part. This result holds for any
ǫ > 0.

These results are similar in spirit to results of Burq-Zworski [BZ04] and of Burq-
Hassell-Wunsch [BHW07], but the techniques of proof are different. Let us be
precise.

Let Ω ⊂ R
2 be a planar domain with boundary in the 0-Gevrey class G0

τ for τ <
∞, and let R = [−a, a]×[−π, π] ⊂ R

2 be a rectangle with boundary consisting of the
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two sets of parallel segments ∂R = Γ1∪Γ2, with Γ1 = [−a, a]×{π}∪ [−a, a]×{−π}.
Assume R ⊂ Ω and Γ1 ⊂ ∂Ω but Γ̊2 ∩ ∂Ω = ∅. We assume that for (x, y) in a
neighbourhood of R, ∂Ω is symmetric about the line y = 0. Let Y (x) = π + r(x)
be a graph parametrization of the boundary curve ∂Ω for (x, y) near [−a, a]×{π}.
Theorem 3. Consider the quasimode problem on Ω:

{
(−∆− λ2)u = E(λ)‖u‖L2 , on Ω,

Bu = 0, on ∂Ω,

where B = I or B = ∂ν (either Dirichlet or Neumann boundary conditions).
Assume that ±r′(x) > 0 for at least one of ±(x∓ a) > 0 (that is, the boundary

curves “outward” away from the rectangular part of the boundary for at least one
side). Fix ǫ > 0. If E(λ) = O(λ−ǫ) as λ → ∞ and WFλ−1u vanishes outside a
neighbourhood of size O(λ−ǫ) of R, then u = O(λ−∞) on Ω.

See Figures 4 and 5 for examples where the theorem applies.

Remark 6.1. It should be clear from the proof that the 0-Gevrey assumption need
only hold in a neighbourhood of the rectangular region R. It should also be clear
from the proof that the symmetry in y is not necessary; it is enough that the vertical
distance is increasing on at least one side of the rectangular part (see Figure 6).

It is believed that there can be a sequence of eigenfunctions which concentrate
on the entire rectangular part. This result does not preclude this, as the neigh-
bourhood in which the theorem applies shrinks to the rectangular part as λ→ ∞.
However, it gives a lower bound on how fast a quasimode may concentrate on the
rectangular part under the assumptions of the Theorem. Moreover, the proof is
meant to be extremely elementary given the estimates established in the first part
of this paper. It is possible that in some special cases, with a little more care, the
assumptions can be weakened to include any quasimode localized in a sufficiently
small neighbourhood independent of λ.

We also remark that this theorem does not apply to the famous Bunimovich
stadium, since the boundary in that case is neither 0-Gevrey smooth, nor does it
open outward on either side of the rectangular part. Indeed, following the first
part of the proof of Theorem 3 below, the effective potential curves “upward” as
y ∼ −(π − (x∓ a)2)1/2, where 2π is the height of the Bunimovich stadium and 2a
is the width of the rectangular part. A very sketchy heuristic is that the lowest
energy quasimode sitting in this potential well occurs when the potential well is
approximately λ−1 deep. That is, it should be concentrated in the set where

y + π = π − (π − (x∓ a)2)1/2 ∼ λ−1,

which occurs when x∓ a ∼ λ−1/2, or within a λ−1/2 neighbourhood of the rectan-
gular part. This is precisely the type of behaviour that Theorem 3 rules out.

Proof. The first step in the proof is to straighten the boundary near the rectangular
part and then approximately separate variables. The boundary Γ near R is given
by y = ±Y (x) = ±(π + r(x)) for x ∈ [−a − δ, a + δ] for some δ > 0. Write
P0 = −∂2x − ∂2y for the flat Laplacian. We will “straighten the boundary” near
R and compute the corresponding change in the metric. From this we will get a
non-flat Laplace-Beltrami operator which is almost separable. Recall u solves

P0u = λ2u+ E(λ)‖u‖
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R

Figure 4. A partially rectangular billiard opening “outward”
away from the rectangular part. No O(λ−ǫ) quasimode can con-
centrate in an O(λ−ǫ) neighbourhood of R.

R

Figure 5. A partially rectangular billiard opening “outward”
away from the rectangular part on one side and “inward” on the
other. The same conclusion applies.

and if χ(x, λ) satisfies χ ≡ 1 on {|x| 6 a+λ−ǫ}, with support in, say {|x| 6 a+2λ−ǫ}
then

χu = u+O(λ−∞)‖u‖

in any Sobolev space. Let R̃ = {(x, y) ∈ Ω : |x| 6 a + 4λ−ǫ} be a shrinking
neighbourhood of R in Ω, which is slightly larger than the set where χu is supported.
We change variables (x, y) 7→ (x′, y′) in R̃ in a way which straightens out the
boundary:

{
x = x′,

y = y′Y (x′).
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2π + r(x)

Figure 6. Part of a partially rectangular billiard where the local
symmetry in y does not hold, but the vertical distance on one side
is an increasing function away from the rectangular part. The same
conclusion applies in this case as well by trivially modifying the
proof.

Thus when y = ±Y (x) = ±Y (x′), y′ = ±1. We have

g = dx2 + dy2

= (dx′)2 + (Y dy′ + y′Y ′(x′)dx′)2

= (1 +A)(dx′)2 + 2Bdx′dy′ + Y 2(dy′)2,

where

A = (y′Y ′(x′))2,

and

B = y′Y ′Y.

In matrix notation,

g =

(
1 +A B
B Y 2

)
.

Let us drop the cumbersome (x′, y′) notation and write (x, y) instead. In order to
compute ∆g in these coordinates, we need |g| and g−1. We compute

|g| = Y 2(1 +A)−B2

= Y 2 + y2Y 2(Y ′)2 − y2Y 2(Y ′)2

= Y 2.

Hence

g−1 = Y −2

(
Y 2 −B
−B 1 +A

)
.

For our quasimode u as above, we have after a tedious computation

−∆gu = −
(
∂2x + Y −2(1 +A)∂2y + Y ′Y −1∂x − 2BY −2∂x∂y

− Y −1(B/Y )x∂y − Y −1(B/Y )y∂x + Y −1((1 +A)/Y )y∂y

)
u.

Now let χ̃(x, λ) be a smooth function such that χ̃ ≡ 1 on suppχ with support
in {|x| 6 a + 4λ−ǫ}. Let us also assume for simplicity that we have normalized



40 H. CHRISTIANSON

‖u‖ = 1. Then, since ∆g does not enlarge the wavefront set, we have

−∆gu = −χ̃∆gu+O(λ−∞)

= −∆gχ̃u− [χ̃,∆g]u+O(λ−∞)

= −∆gχ̃u+O(λ−∞)

by the support properties of χ̃, χ, and the wavefront assumption on u. Hence we
have

−∆gχ̃u = λ2χ̃u+ E(λ)‖χ̃u‖+O(λ−∞).

Observe now that the functions A and B are both O(Y ′(x)) = O(r′(x)), which for

(x, y) ∈ R̃ is O(λ−∞). Hence,

−∆gχ̃u = P2χ̃u+O(λ−∞),

where P2 = −∂2x − Y −2(x)∂2y . That is,

P2χ̃u = λ2χ̃u+ E(λ)‖χ̃u‖+O(λ−∞).

Since χ̃u is supported in R̃, which in these coordinates is just the rectangle

R̃ = [−a− 4λ−ǫ, a+ 4λ−ǫ]x × [−1, 1]y,

we can expand in a Fourier basis (with appropriate boundary conditions):

χ̃u =
∑

k∈Z

χ̃uk(x)ek(y).

Let β2
k ∼ k2 be the eigenvalues in the y direction, so that −∂2yek = β2

kek, and let

Pk = −∂2x + β2
kY

−2(x), so that

P2χ̃u =
∑

k∈Z

ek(y)Pkχ̃uk.

Now we rescale h = β−1
k and write

P (h) = −h2∂2x + Y −2(x),

so that w = χ̃uk must satisfy a semiclassical equation of the form

P (h)w = zw + Ẽ‖w‖+O(λ−∞),

where z = h2λ2 and Ẽ = h2E(λ).

Now on R̃, the function Y −2 satisfies π−2 − δ/2 6 Y −2 6 π−2 for some δ > 0
independent of λ→ ∞. If z < π−2 − δ, say, then P (h)− z is elliptic and satisfies

‖(P (h)− z)−1χ̃‖L2→L2 6 C.

Hence for z in this range, we have

‖w‖ = CẼ‖w‖+O(λ−∞),

which implies ‖w‖ = O(λ−∞), since in this range of z, we have h2 6 Cλ−2, which
implies

Ẽ = h2E(λ) = O(λ−2)

in any case.
Now if z > π−2 + δ, then {ξ2 + Y −2(x) = z} has no critical points, so for these

values of z, P (h)− z obeys a non-trapping estimate:

‖(P (h)− z)−1χ̃‖L2→L2 6 Ch−1.
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Applying the same argument as in the previous case and observing that

h−1Ẽ = hE = O(λ−ǫ)

yields again w = O(λ−∞).
For the remaining range of z, we must use our estimates from Propositions 3.8

and 3.14. We have assumed that E(λ) = O(λ−ǫ) = O(hǫ) for some ǫ > 0 fixed.
Since we are now in the region where

π−2 − δ 6 z 6 π−2 + δ,

we have h ∼ λ−1, so E(λ) = O(λ−ǫ) ∼ O(hǫ) as h → 0, and O(h∞) is equivalent
to O(λ−∞). We can further microlocalize and apply Proposition 3.8 or 3.14 (as the
case may be) with η ≪ ǫ to get

‖w‖ 6 CληE(λ)‖w‖+O(λ−∞),

which again implies ‖w‖ = O(λ−∞).
�

Appendix A. A User’s Guide to Resolvent Gluing

Recently, a number of authors have used various constructions to glue together
resolvent estimates from different situations (see, for example, [Chr08,CW11,DV12,
CM13] and the present work). For example, the best estimates near classically
trapped sets are typically very local (or microlocal) in nature, but in most rea-
sonable situations, the geodesic flow tends to infinity uniformly outside a small
neighbourhood of the trapping. Hence one expects the behaviour at spatial infinity
to act somewhat independently of the behaviour near the trapped set. As a result,
one tries to “glue” the microlocal estimates near the trapping into the non-trapping
estimates at infinity. In this appendix, we present a simple gluing technique which
works in the cases of interest in this paper; namely in one dimensional semiclassical
potential scattering.

Let P = −h2∂2 + V (x) be a semiclassical Schrödinger operator in one spatial
dimension. We assume the potential V (x) is a short range perturbation of the
inverse square potential (with one or two “ends”). That is, we assume that for
some R > 0,

|x| > R =⇒ |∂k(V (x)− x−2)| 6 Ck 〈x〉−2−k
.

Let p = ξ2 + V (x) be the symbol of P . In this case, it is well known that any
critical points of Hp are contained in a compact set, and there exists a large,
positive number M and a symbol p̃ which is globally non-trapping, and p = p̃ for
x >M − 1. Then there are a wide selection of non-trapping estimates available for

P̃ = Op h(p̃) with a O(h−1) bound on the cutoff resolvent. As we have seen in this
paper, if there are any stable critical elements of Hp, then there are many nearby
trajectories which do not escape to infinity, and no gluing techniques are necessary,
since we already know the resolvent blows up rapidly. Hence this construction will
only apply when all the critical elements of Hp are at least weakly unstable.

Increasing M later on if necessary, we first select a number of cutoffs. Let
χ̃ ∈ C∞

c (R), 0 6 χ̃ 6 1, χ̃ ≡ 1 for |x| 6 2M . Let χ̃2 ∈ C∞
c (R) be equal to 1 on

supp χ̃ with slightly larger support. Let ρs ∈ C∞(R) be a smooth function, ρs > 0,
ρs(x) ≡ 1 on supp χ̃2, ρ(x) = 〈x〉s for very large |x|. Let Γ ∈ C∞

c (R) be a cutoff
equal to 1 on {|x| 6 M − 1} with support in {|x| 6 M}. That means that the
non-trapping symbol p̃ equals p on the support of 1 − Γ. The idea is that things
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are well-behaved on the support of 1− Γ, and on the support of Γ, we decompose
Γ into a sum of cutoffs where we have “black-box” microlocal estimates established
through other means. The most important tool for gluing all of these estimates
together is the propagation of singularities lemma in the next subsection.

A.1. Propagation of Singularities. The rough idea behind propagation of sin-
gularities is that if two regions in phase space are connected by the Hp flow, then
the L2 mass in one region is controlled by the L2 mass in the other, modulo a term
involving P . The very nature of requiring the Hp flow to move from one region to
another means these estimates are inherently non-trapping.

In order to motivate the more general statement below, let us describe a baby
version of propagation of singularities in the very special case that the operator
is P = hDx. Of course, it is well known that if Hp 6= 0, then P is microlocally
conjugate to hDx, so this is not as ridiculous as it initially seems. Indeed, the rough
heuristic we sketch here can be fixed up to provide an alternative proof to Lemma
A.1 below. The proof of this Lemma in [Chr08] proceeds by the traditional method
of the original proof of Hörmander (see the original in [Hör71] or the presentation
in [Tay81]).

Consider a function u(x) of one variable. Let a < b be two points in R. We show
that the L2 mass of u in a neighbourhood of size 1 about a is controlled by the mass
of u near b in a neighbourhood of size K modulo a term involving P . Perhaps more
importantly, the constant on the term near b is comparable to K−1/2. That is, by
enlarging the control region to size K, we can make the constants in our estimates
small.

For s, t > 0, we write

u(a+ s)− u(b+ t) =

∫ b+t

a+s

u′(r)dr =
i

h

∫ b+t

a+s

Pudr.

Rearranging and taking the absolute value squared and applying Hölder’s inequality
to the integral, we get

|u(a+ s)|2 6 2|u(b+ t)|2 + 2h−2

(∫ b+t

a+s

|Pu|dr
)2

6 2|u(b+ t)|2 + 2h−2((b+ t)− (a+ s))‖Pu‖2L2(a+s,b+t).

We now integrate in 0 6 s 6 1:

‖u‖2L2(a,a+1) 6 2|u(b+ t)|2 + 2h−2((b+ t)− a)‖Pu‖2L2(a,b+t).

We follow this by integrating in 0 6 t 6 K to get

K‖u‖2L2(a,a+1) 6 2‖u‖2L2(b,b+K) + 2Kh−2(b+K − a)‖Pu‖2L2(a,b+K).

We conclude that

‖u‖L2(a,a+1) 6

√
2√
K

‖u‖L2(b,b+K) +
√
2h−1(b+K − a)1/2‖Pu‖L2(a,b+K).

The more general version of this idea is given in the following Lemma from
[Chr08].

Lemma A.1. Let Ṽ1, Ṽ2 ⋐M , and for j = 1, 2 let Vj ⋐ T ∗M ,

Vj := {(x, ξ) ∈ T ∗M : x ∈ Ṽj , |p(x, ξ)− E| 6 α},
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for some α > 0. Suppose the Ṽj satisfy dist g(Ṽ1, Ṽ2) = L, and assume




∃C1, C2 > 0 such that ∀ρ in a neighbourhood of V1,
exp(tHp)(ρ) ∈ V2 for√
E(L+ C1) 6 t 6

√
E(L+ C1 + C2).

(A.1)

Suppose A ∈ Ψ0,0
h is microlocally equal to 1 in V2. If B ∈ Ψ0,0

h and WF(B) ⊂ V1,
then there exists a constant C > 0 depending only on C1, C2 such that

‖Bu‖ 6 CLh−1‖B‖H→H ‖(P (h)− z)u‖+ 2(E + α)3/4
(C1 + 1)√

C2

‖B‖H→H‖Au‖

+O(h)‖B̃u‖,
where

B̃ ≡ 1 on ∪06t6
√
E(L+C1+C2)

exp(tHp)(WFB).

A.2. The gluing. Now fix an energy level z. As described briefly above, we now
assume that the function Γ can be further decomposed as a sum of pseudodifferential
cutoffs:

Γ =

N∑

j=1

Γj ,

where for each Γj , Γj = 1 on a set where Hp = 0, and we have a microlocal black
box estimate of the form

‖Γju‖ 6
αj(h)

h
‖(P − z)Γju‖.

Here, it is necessary that αj(h) = O(h−K) for the technique to work (this is the
same condition in, for example, [DV12]). However, in this paper, we have seen that
for the present applications, this estimate is true with K = 1 + ǫ. We will assume
this is true to save a little bit of work later (but we will point out where the extra
step would be needed). We also require that each Γj ∈ S0. Naturally, at least one
of the Γjs will be supported for large frequencies ξ where P − z is elliptic, so in this
case the corresponding αj(h) = O(h).

We write for s < −1/2 and some positive numbers c1, c2:

‖ρ−s(P − z)u‖2 > c1(‖ρ−s(1− Γ)(P − z)u‖2 + ‖Γ(P − z)u‖2)

> c2(‖ρ−s(1− Γ)(P − z)u‖2 +
N∑

j=1

‖Γj(P − z)u‖2).

There is no ρ−s in the terms coming from Γ because ρ−s was assumed to equal 1
on suppΓ. We now write

‖ρ−s(1− Γ)(P − z)u‖2 = ‖ρ−s(P − z)(1− Γ)u+ [P,Γ]u‖2

= ‖ρ−s(P − z)(1− Γ)u‖2 + ‖[P,Γ]u‖2

+ 2Re 〈ρ−s(P − z)(1− Γ)u, [P,Γ]u〉
> ‖ρ−s(P − z)(1− Γ)u‖2 + ‖[P,Γ]u‖2

− 2‖ρ−s(P − z)(1− Γ)u‖‖[P,Γ]u‖.
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Expanding similarly the terms involving the Γjs, we get

‖ρ−s(P − z)u‖2 > ‖ρ−s(P − z)(1− Γ)u‖2 + ‖[P,Γ]u‖2

− 2‖ρ−s(P − z)(1− Γ)u‖‖[P,Γ]u‖

+
N∑

j=1

(
‖ρ−s(P − z)Γju‖2 + ‖[P,Γj ]u‖2

− 2‖ρ−s(P − z)Γju‖‖[P,Γj ]u‖
)
.

Applying Cauchy’s inequality yields for η > 0:

‖ρ−s(P − z)u‖2

> ‖ρ−s(P − z)(1− Γ)u‖2 + ‖[P,Γ]u‖2

− 2
(
η‖ρ−s(P − z)(1− Γ)u‖2 + 4η−1‖[P,Γ]u‖2

)

+

N∑

j=1

(
‖ρ−s(P − z)Γju‖2 + ‖[P,Γj ]u‖2

− 2(η‖ρ−s(P − z)Γju‖2 + 4η−1‖[P,Γj ]u‖2)
)
,

which, by taking η > 0 sufficiently small but fixed yields (for some positive constant
c3 > 0 and some large constant C > 0)

‖ρ−s(P − z)u‖2 > c3‖ρ−s(P − z)(1− Γ)u‖2 − C‖[P,Γ]u‖2

+
N∑

j=1

(
c3‖ρ−s(P − z)Γju‖2 − C‖[P,Γj ]u‖2

)
.(A.2)

We are now in a position to apply Lemma A.1 to each of the commutator terms.
Let Γ⋆ be any of the microlocal cutoffs in (A.2). The commutator [P,Γ⋆] is of order
h and supported in a region where every Hp trajectory flows out to ±∞ in space
(in at least one direction). We apply Lemma A.1 with

A = ρs(1− Γ),

the constant C2 = M . For B̃, we choose an appropriate microlocal cutoff ψ⋆ for
each j (and for Γ) so that B̃ = χ̃ψ⋆ is supported where Hp 6= 0 on the flowout of
the support of the symbol of [P,Γ⋆] and we get

‖[P,Γ⋆]u‖ 6 CM‖(P − z)u‖+ C0h√
M

‖ρs(1− Γ)u‖+ Ch2‖χ̃u‖,

with C0 > 0 independent of h and M (of course CM does depend on M but that is
okay for our applications). Plugging into (A.2), we get

‖ρ−s(P − z)u‖2

> c3‖ρ−s(P − z)(1− Γ)u‖2

+
N∑

j=1

c3‖ρ−s(P − z)Γju‖2

− C ′(CM‖(P − z)u‖2 + C0h
2

M
‖ρs(1− Γ)u‖2 + Ch4

N∑

j=0

‖χ̃ψju‖2).(A.3)
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Here the constant C ′ > 0 can be quite large as we are summing over all the com-
mutator terms, but is independent of the parameter M . The sum is from j = 0 to
N , where we identify Γ0 = Γ.

For the applications in this paper, the error term Ch4‖χ̃u‖2 is just barely too
big, so we apply Lemma A.1 one more time to this term with the same A and
B̃ = χ̃2 to get

h2‖χ̃ψu‖ 6 CMh‖(P − z)u‖+ CMh
2‖ρs(1− Γ)u‖+ Ch3‖χ̃2u‖,

where now all the constants may be large. Note if the αj(h) = O(h−N ) for a much
larger N , then we could apply this argument a finite number of times to further
reduce the size of the error. Plugging into (A.3) and absorbing terms which are
small into the larger ones, we get

‖ρ−s(P − z)u‖2

> c3‖ρ−s(P − z)(1− Γ)u‖2

+

N∑

j=1

c3‖ρ−s(P − z)Γju‖2

− C ′(CM‖(P − z)u‖2 + C0h
2

M
‖ρs(1− Γ)u‖2 + Ch6‖χ̃2u‖2).

Finally, we move the negative terms with (P −z) to the left hand side and apply
all the assumed black box microlocal estimates to conclude

‖ρ−s(P − z)u‖2

> c3h
2‖ρs(1− Γ)u‖2

+
N∑

j=1

c3
h2

α2
j (h)

‖Γju‖2

− C ′(
C0h

2

M
‖ρs(1− Γ)u‖2 + Ch6‖χ̃2u‖2).

By taking M > 0 sufficiently large, the term

−C ′C0h
2

M
‖ρs(1− Γ)u‖2

can be absorbed into the positive term with the same cutoffs. After taking the
worst lower bound and summing over our partition of unity, this gives

‖ρ−s(P − z)u‖2

> c4h
2 min

{
1, α−2

1 (h), . . . , α−2
N (h)

}
‖ρsu‖2 − C ′′h6‖χ̃2u‖2.

We finish by observing that

h6 ≪ h2 min
{
1, α−2

1 (h), . . . , α−2
N (h)

}
,

and ρs ≡ 1 on supp χ̃2, so this term can be absorbed as well, leaving us with a final
estimate of

‖ρ−s(P − z)u‖2

> c4h
2 min

{
1, α−2

1 (h), . . . , α−2
N (h)

}
‖ρsu‖2.
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