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Abstract. We study the problem of estimating the L2 norm of Laplace eigen-

functions on a compact Riemannian manifold M when restricted to a hyper-
surface H. We prove mass estimates for the restrictions of eigenfunctions ϕh,
(h2∆ − 1)ϕh = 0, to H in the region exterior to the coball bundle of H, on

hδ-scales (0 ≤ δ < 2/3). We use this estimate to obtain an O(1) L2-restriction
bound for the Neumann data along H. The estimate also applies to eigenfunc-
tions of semiclassical Schrödinger operators.

1. Introduction

We consider here the eigenvalue problem on a compact Riemannian manifold
(M, g) with or without boundary, with either Dirichlet or Neumann boundary con-
ditions if ∂M 6= ∅. That is, we consider















−∆gϕj = λ2jϕj , on M,
〈ϕj , ϕk〉 = δjk

Bϕj = 0 on ∂M.

Here, ∆g is the negative Laplacian associated with the metric g, 〈f, g〉 =
∫

M
fḡdV

is the L2(M) inner product with respect to the induced Riemannian volume form
dV , and where B is the boundary operator, either Bϕ = ϕ|∂M in the Dirichlet case
or Bϕ = ∂νϕ|∂M in the Neumann case.

We introduce a hypersurface H ⊂M , which we assume to be orientable, embed-
ded, and separating in the sense that

M\H =M+ ∪M−

where M± are domains with boundary in M . This is not a restrictive assumption
since our argument is local, and every hypersurface is locally separating.

Our main result deals with L2-restriction bounds for the normalized Neumann
data λ−1∂νϕλ|H .
Theorem 1. Suppose H ⊂ M is a smooth, embedded orientable separating hy-
persurface and assume that H ∩ ∂M = ∅ if ∂M 6= ∅. Let {ϕλj

}∞j=1 denote the

L2-orthonormalized Laplace eigenfunctions on M. Then,

‖λ−1
j ∂νϕλj

‖L2(H) = O(1).

Theorem 1 generalizes a classical result for boundary traces of Dirichlet eigen-
functions to arbitrary interior hypersurfaces (see e.g. Hassell and Tao [HT]). We
note that the universal L2-restriction upper bound in Theorem 1 for the normalized
Neumann data λ−1∂νϕλ|H is sharp (see Section 6) and is substantially better than
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for the corresponding Dirichlet data ϕλ|H which, by [BGT], is only O(λ
1

4 ). The
latter estimate is also sharp.

We actually prove a more general result here that applies to eigenfunctions of
general semiclassical Schrödinger operators with Theorem 1 a special case.

Theorem 2. Let P (h) denote the Schrödinger operator P (h) = −h2∆g + V (x)
with V ∈ C∞(M ;R). Let E be a regular value of the symbol p(x, ξ) = |ξ|2g + V (x),

and let ϕh ∈ C∞(M, g) be a sequence of L2-normalized eigenfunctions of P (h) with
eigenvalues E(h) in the interval [E−Ch,E+Ch]. Then, provided H is an oriented
separating hypersurface with V (x) < E for x ∈ H, we have

‖h∂νϕh‖L2(H) = O(1)

as h→ 0.

For simplicity, we give the proof of Theorem 1 first and then outline the fairly
minor changes for Schrödinger eigenfunctions in section 5.

We should point out that although not explicitly stated in Tataru’s paper, the
result for Laplace eigenfunctions in Theorem 1 actually follows from [Ta] Theorem 2
if one consider wave functions of the form u(x, t) = eiλtϕλ(x). Then, the regularity
bounds for u(x, t) in [Ta] readily yield the semiclassical estimates for the eigen-
functions ϕλ(x) in our Theorem 1. However, our proof of Theorem 1 here is quite
different and our general result in Theorem 2 is apparently new. We remark also
that we have been informed that Melissa Tacy has also obtained an independent
proof of Theorem 1 using different methods in a current work in progress.

Theorems 1 and 2 follow from a Rellich commutator argument together with a
‘small-scale’ estimate for the mass of an eigenfunction in the region exterior to the
coball bundle on H (Proposition 3.1). Here the significance of the coball bundle is
that it is the projection of the characteristic variety of the semiclassical Laplacian
−h2∆ − 1 to T ∗H, hence the region of phase phase where the eigenfunctions are
expected to concentrate. By ‘small-scale’ we mean we localize outside a neighbour-
hood of the coball bundle of size hδ, where δ is allowed to be larger than 1/2; in
fact, we find that one can let δ be as large as 2/3 − ǫ: we show that outside a
neighbourhood of this size, the mass is O(h∞). Also, we observe that the exponent
2/3 is optimal; in fact, the mass outside an h2/3-sized neighbourhood of the coball
bundle can be as large as h1/6 as we show with a simple example.

In the following we let the semiclassical parameter h ∈ {λ−1
j }∞j=1 and rescale the

Laplacian to the semiclassical operator P (h) = −h2∆g−1.We abuse notation some-
what and write ϕh = ϕλ for the eigenfunction with eigenvalue λ2 = h−2. To state
the relevant commutator estimate, we introduce various h-pseudodifferential cutoffs
suppressing for the moment some of the technical details. Let χ ∈ C∞

0 (R; [0, 1])
with χ(u) = 1 for |u| ≤ 1/2 and χ(u) = 0 for |u| > 1, χ− ∈ C∞(R) with χ−(u) = 1
when u < −1 and χ+ ∈ C∞(R) with χ+(u) = 1 when u > 1. In addition we require
that

χ−(u) + χ(u) + χ+(u) = 1; u ∈ R.

Let R(x′, ξ′) = σ(−h2∆H)(x′, ξ′) be the principal symbol of the induced hyper-
surface Laplacian −h2∆H : C∞(H) → C∞(H) and consider the decomposition of
T ∗H into 3 pieces given by the radial cutoffs χin, χtan, χout ∈ C∞(R; [0, 1]) with
χin(x

′, ξ′) = χ−(R(x
′, ξ′) − 1), χtan(x

′, ξ′) = χ(R(x′, ξ′) − 1) and χout(x
′, ξ′) =

χ+(R(x
′, ξ′) − 1). Clearly, supp χin ⊂ B∗H, supp χout ∈ T ∗H − B∗H and in
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w
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Figure 1. The hypersurface H in Fermi normal coordinates
with the restricted cosphere bundle. In the second picture we have
projected onto the coball bundle of H and sketched the microlocal
partition of unity. The cutoff (χin)

w
h,δ microlocalizes to the interior

of the coball, on scale hδ from the edge, (χout)
w
h,δ microlocalizes to

the exterior on the same scale, and (χtan)
w
h,δ (in dashed) microlo-

calizes to the edge of this set, where |ξ′| ∼ 1 on scale hδ. This is
the “glancing” set, since these directions have little or no normal
direction ξn in the lifted cosphere bundle.

addition,

(1.1) χin(x
′, ξ′) + χtan(x

′, ξ′) + χout(x
′, ξ′) = 1; (x′, ξ′) ∈ T ∗H.

For any δ ∈ [0, 1) we also define the rescaled cutoff functions by (χin)h,δ(x, ξ) =
χ−(h

−δ(R(x′, ξ′)−1)), (χtan)h,δ(x, ξ) = χ(h−δ(R(x′, ξ′)−1)), and (χout)h,δ(x, ξ) =
χ+(h

−δ(R(x′, ξ′)− 1)).
We denote the corresponding h-Weyl pseudodifferential partition of unity by

(χtan)
w
h,δ = Opwh ((χtan)h,δ) and similarly for (χout)

w
h,δ and (χin)

w
h,δ (see Figure

1). In the following, we denote the canonical restriction map by γH : C∞(M) →
C∞(H) and the corresponding eigenfunction restriction by ϕH

h := γHϕh ∈ C∞(H).
Let us explain how our argument begins. We use a Rellich identity, involving

the commutator of −h2∆ − 1 with the operator χ(xn)hDn. Integrating over M−,
we have, using Green’s formula,

i

h

∫

M−

[−h2∆− 1,χ(xn)hDn]ϕhϕhdx

=

∫

H

((hDn)
2ϕh)|Hϕh|HdσH +

∫

H

(hDnϕh)|HhDnϕh|HdσH .

The LHS is O(1) as it involves the expectation value of ϕh with a second order
differential operator. The second term of the RHS is exactly the quantity we seek
to bound. Thus we need to understand the first term on the RHS. Since ϕh is
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an eigenfunction, (hDn)
2ϕh is equal to (1 + h2∆H)ϕh up to an error term h2LϕH

h

where L is a first order differential operator. We can ignore the h2L term using the
Burq et al O(h−1/4) bound for ϕH

h . The main observation that makes the proof
work is that ϕH

h is semiclassically localized inside the coball bundle of H, and on
this set, 1 + h2∆H has nonnegative symbol. Hence the first term on the LHS is
morally a positive term, that is, of the same sign as the second term. This leads
immediately to the O(1) estimate we seek. Thus the main work in the proof is
justifying that the (1 + h2∆H)ϕH

h term is indeed positive up to an O(1) error. To
do this, we break up this term using the partition of the identity operator given
by (χin)

w
h,δ, (χtan)

w
h,δ and (χout)

w
h,δ defined above, for δ > 1/2, and analyze each

separately.

2. Second microlocalization at a hypersurface

In the proof of Theorem 1 we will use h-pseudodifferential operators second mi-
crolocalized (2-microlocalized) along the hypersurface H. For the convenience of
the reader, we collect and briefly review here the requisite semiclassical analysis
including the various 2-microlocal symbol classes and the corresponding pseudodif-
ferential operator calculus. The material here is a special case of a more general
two-parameter calculus developed in [SjZw1, SjZw2]. Since our interest lies in es-
tablishing L2-restriction bounds for eigenfunctions along a hypersurface H ⊂ M,
we need only consider ambient symbols supported in an ǫ > 0 neighbourhood of H,
where ǫ > 0 is arbitrary small. Thus, we introduce Fermi coordinates x = (x′, xn)
near H with x = expx′(xnνx′) with νx′ an exterior unit normal to H. Since by as-
sumption H is orientable, this is well-defined. In Fermi coordinates, H = {xn = 0}
and it is convenient to define our symbols in terms of these coordinates. We do so
without further comment.

2.1. Homogeneous and semiclassical symbol classes. We collect for future
reference a brief review of the standard symbol classes and corresponding pseudo-
differential operators used later on (see also [Zw, Section 4.4]). The more subtle 2
microlocal semiclassical analysis is treated in 2.2.2.

The standard homogeneous symbol spaces that are relevant here are

Sm
ρ,δ(T

∗M)

= {a(x, ξ) ∈ C∞(T ∗M − 0); |∂αx ∂βξ a(x, ξ)| = Oα,β(〈ξ〉m−ρ|α|+δ|β|), ρ > δ}(2.1)

As for the semiclassical symbols, the relevant symbol classes for our purposes are

Sm,k
cl (T ∗M × (0, h0]) = {a(x, ξ;h) ∈ C∞(T ∗M × (0, h0]);

(2.2)

a(x, ξ;h) ∼
∞
∑

j=0

am−j(x, ξ)h
−m+j , am−j ∈ Sk

0,0},

Sm
δ (T ∗M × (0, h0])

(2.3)

= {a(x, ξ;h) ∈ C∞(T ∗M × (0, h0]; |∂αx ∂βξ a| = Oα,β(h
−mh−δ(|α|+|β|)〈ξ〉−∞)},

with δ ∈ [0, 1). Since both the eigenfunctions ϕh and their restrictions uh = ϕh|H
have compact h-wavefront sets (see for example [Zw, Section 8.4] and Section 3
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below) we are interested here in only the case where the ξ variables are in a compact
set. Consequently, the semiclassical symbol classes Sm

δ are most relevant. In the
special case where δ = 0,

Sm
0 (T ∗M × (0, h0]) = {a ∈ C∞(T ∗M × (0, h0]); |∂αx ∂βξ a| = Oα,β(h

−m〈ξ〉−∞)}.
When the context is clear, we sometimes just write Sm

δ instead of Sm
δ (T ∗M×(0, h0]).

The case where δ = 0 is sometimes denoted by Sm(1) in the literature.
The corresponding h-Weyl pseudodifferential operators have Schwartz kernels

that are sums of the local integrals of the form

(2.4) Opwh (a)(x, y) = (2πh)−n

∫

Rn

ei〈x−y,ξ〉/ha(
x+ y

2
, ξ;h)dξ.

We will use Opwh (a), a
w
h and aw(x, hDx) interchangeably to denote h-Weyl quan-

tizations of a(x, ξ;h) since each has its advantages. It is standard that for a ∈
Sm1,k1

cl , b ∈ Sm2,k2

cl ,

aw(x, hDx) ◦ bw(x, hDx) = eihσ(Dx,Dξ,Dy,Dη)/2a(x, ξ)b(y, η)|y=x,η=ξ

= cw(x, hDx) ∈ Opwh (S
m1+m2,k1+k2

cl (T ∗M))

with c(x, ξ;h) = a(x, ξ;h)#b(x, ξ;h) and σ(x, ξ, y, η) = yξ − xη. Similarily, for
a ∈ Sm1

δ , b ∈ Sm2

δ with δ ∈ [0, 1/2),

aw(x, hDx) ◦ bw(x, hDx) = cw(x, hDx) ∈ Opwh (S
m1+m2

δ (T ∗M))

with c(x, ξ;h) = a(x, ξ;h)#b(x, ξ;h).
Since eigenfunctions (and their restrictions) have compact h-wavefront, it is the

algebra Oph(S
∗
δ ) that is most relevant here. We point out that for aw(x, hDx) ∈

Oph(S
0
δ ), 0 ≤ δ < 1/2, with a(x, ξ;h) ≥ 0, one also has the sharp G̊arding inequality

aw(x, hDx) ≥ −Ch1−2δ (in the L2 sense) and indeed the sharper Fefferman-Phong
inequality

(2.5) aw(x, hDx) ≥ −Ch2−4δ

also holds [Zw, Section 4.7].

2.2. Semiclassical second-microlocal pseudodifferential cutoffs: microlo-

cal decompostion.

2.2.1. Fermi normal coordinates near H. Frow now on, we let x = (x′, xn) be Fermi
normal coordinates in a small tubular neighbourhoodH(ǫ) ofH defined near a point
x0 ∈ H. In these coordinates we can locally write

H(ǫ) := {(x′, xn) ∈ U × R, |xn| < ǫ}.
Here U ⊂ R

n−1 is a coordinate chart containing x0 ∈ H and ǫ > 0 is arbitrarily
small but for the moment, fixed. We let χ ∈ C∞

0 (R) be a cutoff with χ(x) = 0 for
|x| ≥ 1 and χ(x) = 1 for |x| ≤ 1/2. Moreover, in terms of the normal coordinates,

−h2∆g =
1

g(x)
hDxn

g(x)hDxn
+R(xn, x

′, hDx′)

where R is a second-order h-differential operator along H with coefficients that
depend on xn, and R(0, x

′, hDx′) is the induced tangential semiclassical Laplacian,
−h2∆H , on H. Consequently, at the level of symbols,

σ(−h2∆g)(x, ξ) = |ξ|2g = ξ2n +R(x′, xn, ξ
′),
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where,

σ(−h2∆H)(x′, ξ′) = R(x′, 0, ξ′).

Let γH : C0(M) → C0(H) be the restriction operator γH(f) = f |H . The adjoint
γ∗H : C0(H) → C0(M) is then given by

γ∗H(g) = g · δH .
When there is no risk for confusion we write ϕH

h = γHϕh and similarily ϕH,ν
h =

−ihγH∂xn
ϕh.

We now describe the relevant 2-microlocal h pseudodifferential operators that
are second microlocalized along ΣH := S∗H ⊂ T ∗H.

2.2.2. Semiclassical pseudodifferential operators second microlocalized along ΣH .
We introduce here the relevant 2-microlocal algebra of h-pseudodifferential opera-
tors localized on small scales ∼ hδ where δ ∈ (1/2, 1) that will be used in the proof
of Theorem 1. When δ ∈ (0, 1/2) the pseudodifferential calculus is well-known
[Zw, Chapter 4] but for δ > 1/2 the construction is more subtle. The relevant
calculus has been developed in very general framework by Sjöstrand and Zworski
[SjZw1, SjZw2] to which we refer the reader for further details. Since a rather sim-
ple special case of their calculus will suffice for our purposes, we will attempt to
keep the argument fairly self-contained.

Definition 2.1. Let H ⊂M be a hypersurface. We say that a semiclassical symbol
b is 2-microlocalized along ΣH and write b ∈ Sm

ΣH ,δ(T
∗H × (0, h0]) provided there

exists χ ∈ C∞
0 (R), a1(x

′, ξ′;h) ∈ S0(T ∗H × (0, h0]) such that

b(x′, ξ′;h) = h−ma1(x
′, ξ′;h) · χ

(

R(x′, xn = 0, ξ′)− 1

hδ

)

, 0 ≤ δ < 1

for all (x′, ξ′) ∈ T ∗H.

We will need the following proposition (see also [SjZw1, SjZw2]).

Proposition 2.2. Given aw(x, hDx) ∈ Oph(S
m1

ΣH ,δ) and b
w(x, hDx) ∈ Oph(S

m2

ΣH ,δ)
it follows that

aw(x, hDx) ◦ bw(x, hDx) = cw(x, hDx) ∈ Oph(S
m1+m2

ΣH ,δ )

with

c(x, ξ;h) = a(x, ξ, h)#b(x, ξ, h).

Proof. Since

dξ′R(x
′, 0, ξ′) ≥ C〈ξ′〉, C > 0

near {R(x′, 0, ξ′) = 1}, as in [SjZw1, SjZw2], the proof hinges on the following real-
principal type quantum normal form construction given in the following Lemma.

Lemma 2.3. Let (x0, ξ0) ∈ ΣH and let U ⊂ T ∗H be a sufficiently small open
neighbourhood of (x0, ξ0). For U small, there exists V ⊂ T ∗

R
n−1 open together

with a canonical transformation

κF : (U, (x′0, ξ
′
0)) −→ (V ; (0, 0)); κF (x

′, ξ′) = (y′, η′)

and corresponding h-Fourier integral operators F (h) : C∞
0 (U) → C∞

0 (V ) such that

(i) F (h)∗ ◦ χw
h

(

R(x′, 0, ξ′)− 1

hδ

)

◦ F (h) =U×V χw
h

(

η′1
hδ

;h

)

,
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(ii) F (h)∗ ◦ F (h) =U×V Id,

with χ ∈ C∞
0 (Rn−1; (0, 0) × (0, h0]). Here, A(h) =U×V B(h) denotes h-microlocal

equivalence on U × V ⊂ T ∗H × T ∗
R

n−1.

Given Lemma 2.3 one reduces the proof of the proposition to operators in normal
form. In the conormal variables (xn, ξn) the composition formula is standard since
symbols are in the standard S0

δ/2-classes with δ/2 < 1/2. Since symbols in Sm
ΣH ,δ

are separable, it suffices to assume that a(x, ξ;h) = χ1(h
−δ(R(x′, 0, ξ′) − 1)) and

b(x, ξ;h) = χ2(h
−δ(R(x′, 0, ξ′) − 1)) with χj ∈ C∞

0 (R); j = 1, 2. Let ψUj
× ψVj

∈
Oph(S

0
0); j = 1, ..., N0 be an h-microlocal partition of unity subordinate to a cov-

ering of the supports of a and b in T ∗H by open sets Uj ; j = 1, ..., N0 such that
on each Uj Lemma 2.3 holds with h-FIO F (h) with WF ′

h(F (h)) ⊂ Uj × Vj . From
Lemma 2.3,

awh ◦ bwh =

N0
∑

j=1

ψw
Uj
F (h) ◦ [F (h)∗awhF (h)] ◦ [F (h)∗bwhF (h)] ◦ F (h)∗ψw

Vj
+R(h),

where R(h) ∈ Oph(S
−∞
0 ). For the inner model operators one simply rescales the

fiber variables (y′, η′/hδ) 7→ (y′/hδ/2, η′/hδ/2) and computes the composition in the
model normal coordinates. The result is that in each chart

[F (h)∗awhF (h)] ◦ [F (h)∗bwhF (h)]

(2.6)

=
(

χ1(h
−δη′1)#χ2(h

−δη′1)
)w

+O(h∞)L2→L2

= (2πh)−(n−1)

∫

Rn−1

ei〈x
′−y′,η′〉/hψVj

(
x′ + y′

2hδ/2
, hδ/2η′)(χ1#χ2)(h

−δ/2η′1) dη
′(2.7)

+O(h∞)L2→L2 .

The # product expansion is computed as usual in the h−δ/2 calculus and then
rescaled, which is particularly simple for our special choice of operators:

(χ1#χ2)(h
−δη′1) =

∞
∑

j=0

hj(DxDη −DyDξ)
j [χ1(h

−δη′1) · χ2(h
−δξ′1)]|ξ′=η′

= χ1(h
−δη′1) · χ2(h

−δη′1) +R(y′, η′;h),

where, R(y′, η′;h) ∈ S−∞
0 (T ∗

R
n−1).

�
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Remark. We note that L2 boundedness for awh ∈ Oph(S
0
ΣH ,δ) with δ ∈ [0, 1) is

clear by passing to normal form. Since F (h)∗F (h) ∼=Uj×Vj
Id,

‖aw(x, hDx)‖L2→L2 ≤
N0
∑

j=1

‖χw
h (h

−δη′1)ψ
w
Vj ,h(y

′, η′)‖L2→L2(2.8)

=

N0
∑

j=1

‖χw(h1−δη′1)ψ
w
Vj
(y′, hη′)‖L2→L2

≤
∑

|α|≤2n+1

‖∂αχ(h1−δη′1)ψVj
(y′, hη′)‖L∞

≤ ‖χ(h1−δη′1)ψVj
(y′, hη′)‖L∞ +O(h1−δ).

This follows by rescaling η′ 7→ hη′ in the fiber variables and then applying the
Calderon-Vaillancourt theorem, together with the trivial estimates on the deriva-
tives of the functions χ and ψVj

.

The proof of Lemma 2.3, in particular the local rescaling

(y′, η′/hδ) 7→ (y′/hδ/2, η′/hδ/2),

can also be used to prove a version of the G̊arding inequalities for operators in
Op h(S

m
ΣH ,δ).

Lemma 2.4. Suppose a ∈ S0
ΣH ,δ is real valued and a ≥ 0. Then

〈awu, u〉 ≥ −Ch1−δ‖u‖2.
In particular,

〈

aw|HϕH
h , ϕ

H
h

〉

L2(H)
≥ −Ch1−δ‖ϕH

h ‖2L2(H).

3. Eigenfunction energy localization: estimating the exterior mass

LetM,H and ϕλj
; j = 1, 2, ... be as in the Introduction. A key part of the proof of

Theorem 1 involves estimating the mass of restricted eigenfunctions ϕh|H in regions
exterior to the coball bundle of H and on 2-microlocal scales δ > 1/2 (see section
4). In this section, for the benefit of the reader, we first review some known results
on mass concentration for the ambient eigenfunctions on M. Then, in Proposition
3.1, we give the analogous mass estimates for the restricted eigenfunctions ϕh|H .
The latter results appear to be new.

3.1. Exterior mass estimates on M.. Let h ∈ {λ−1
j }; j = 1, 2, .... Given 0 <

ǫ0 < 1 an arbitrary small number, let χ(x, ξ) ∈ C∞
0 (T ∗M) be equal to one on the

annulus A(ǫ0) = {(x, ξ); (1− ǫ0/10) < |ξ|g < (1+ ǫ0/10) and with supp χ ⊂ A(2ǫ0).
Let χ̃ ∈ C∞

0 be another cutoff equal to one on A(2ǫ0) and with supp χ̃ ⊂ A(4ǫ0).
Consider the eigenfunction equation

(−h2∆g − 1)ϕh = 0.

Then, P (h) := −h2∆g−1 is h elliptic for (x, ξ) ∈ T ∗M−A(ǫ). So, one can construct
an h-microlocal parametrix with Q(h) ∈ Oph(S

0
0,0) so that

(1− χ̃(h))Q(h)P (h)(1− χ(h))ϕh = (1− χ̃(h))ϕh +O(h∞).
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Since P (h)ϕh = 0 and σ([P (h), (1 − χ(h))](x, ξ) = 0 for (x, ξ) ∈ supp(1 − χ̃(h)),
one gets the well-known concentration estimate

(3.1) ‖(1− χ̃(h))ϕh‖L2 = O(h∞).

A similar argument with the derivatives ∂αxϕh(x) combined with Sobolev embedding
implies

(3.2) ‖(1− χ̃(h))ϕh‖Ck = O(h∞),

and as a consequence

WFh(ϕh) ⊂ S∗M.

When δ ∈ (0, 1/2), the parametrix construction above extends to cutoffs χδ(h) ∈
Oph(S

0
δ ) without change and consequently, so do the mass estimate (3.1) and (3.2).

When δ ∈ [1/2, 1), the same is true provided one uses the h-pseudodifferential
calculus 2-microlocalized along the hypersurface Σ = S∗M ⊂ T ∗M. One way to do
this is as follows: we choose ψ ∈ S(R) with ψ(0) = 1 and the Fourier transform
of ψ compactly supported, and write the operator χδ(h) := ψ((−h2∆ − 1)h−δ) in
terms of the Fourier Transform of ψ and the semiclassical propagator of −h2∆.
We can thus derive that this operator is in the 2-microlocal calculus Ψ0

S∗M,δ(M)

with exponent δ. By construction, ψ((−h2∆ − 1)h−δ)ϕh = ϕh. Now we apply an
operator A in Ψ0

S∗M,δ(M) supported where |ξ|g ≥ 1+Chδ to ψ((−h2∆−1)h−δ)ϕh.

The symbol calculus for Ψ0
S∗M,δ(M) shows that for C sufficiently large, the symbol

of the composition is O(h∞), and therefore Aϕh = O(h∞). To summarize, for
eigenfunction masses on M , one has the exterior mass estimate

(3.3) ‖(1− χδ(h))ϕh‖L2(M) = O(h∞), 0 ≤ δ < 1.

3.2. Exterior mass estimates on H. We will need to control exterior mass of
eigenfunction restrictions to H in the 2-microlocal setting where δ > 1/2. Unlike
the case of the ambient manifold M in (3.3), the allowable range of 2-microlocal
scales (ie. the range of δ’s) depends on the curvature of H inside M.

In this section, we prove the following

Proposition 3.1. Let (M, g), H and ϕH
h be as above. Suppose that 0 ≤ δ < 2/3,

and let (χout)
w
h,δ be as defined as in the Introduction. Then

(3.4) (χout)
w
h,δϕ

H
h = O(h∞) in L2(H).

Moreover, in the case where H is totally geodesic, the exterior mass estimate (3.4)
holds for all 0 ≤ δ < 1.

Proof. In view of the discussion in Section 3.1, it suffices to prove that

(3.5) Lh(χout)
w
h,δϕ

H
h = O(h∞) in L2(H)

for every pseudodifferential operator L of semiclassical order zero and compact
microsupport.

By definition of the Sjöstrand-Zworski calculus, Lh(χout)
w
h,δ(x

′, hDx′) is given in
a small microlocal neighbourhood of a point q ∈ T ∗H by an expression of the form

(2πh)−(n−1)

∫

ei(y−y′)·η/hχ+

( η1
hδ

)

dη

after conjugation by a semiclassical FIO Th : L2(H) → L2(Rn−1) associated to
a canonical transformation ρ : T ∗H → T ∗

R
n−1, defined in a neighbourhood of
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WFh(Lh), that ‘straightens’ Σ = S∗H locally, in the sense that ρ∗(η1) = | · |2g̃ − 1

(where g̃ denotes the metric induced on the fibres of T ∗H). (Recall that χ+(t) is
equal to 0 for t ≤ 1/2 and 1 for t ≥ 1.)

If Th is parametrized locally near q by the phase function Φ(y, y′, v) then we
have
(3.6)

Lh(χout)
w
h,δ(x

′, hDx′)ϕH
h =

T−1
h ◦ h∗

∫

ei(y−y′′)·η/hχ+

( η1
hδ

)

eiΦ(y′′,y′,v)/ha1(y
′′, y′, v, h)ϕH

h (y′) dy′ dv dy′′ dη,

for some exponent ∗ (depending on the number of components of v) which is not
relevant, as we are about to show an O(h∞) estimate.

Next, we express ϕH
h locally in terms of its values on a surrounding annulus (up

to O(h∞) errors). To do this, we use Sogge’s approximate projection operator χ̃λ

[Sogge, Section 5.1]. Let us recall that χ̃λ is defined to be the operator χ(
√
∆−λ),

where χ is a Schwartz function with Fourier transform χ̂ having support in the
interval [ǫ0/2, ǫ0], where ǫ0 is chosen small enough (it suffices to take ǫ0 smaller
than the injectivity radius of M). Then, as shown in [Sogge], the Schwartz kernel
of χλ takes the form

χλ(x, y) = λ(n−1)/2a2(y, x, λ)e
−iλdist(x,y) +R(x, y, λ),

where a2 is smooth with all derivatives bounded uniformly in λ, and is supported
where d(x, y) ∈ [(2C0)

−1ǫ0, 2C0ǫ0] for some C0 > 1. On the other hand, R is
smooth with all derivatives O(λ−N ) for every N .

Let h = λ−1. If we scale χ so that χ(0) = 1, then we have

χh−1ϕh = ϕh.

Wemay assume without loss of generality that the projection of the microsupport
of Lh to M is contained in a coball B(p, r) of radius r, where r + 2C0ǫ0 is smaller
than the injectivity radius. In that case, we can write, using a single coordinate
patch,
(3.7)

ϕh(x) = h−(n−1)/2

∫

e−idist(x,y)/ha2(y, x, h)ϕh(y) dy +O(h∞), x ∈ B(p, r),

where a2 is smooth with all derivatives bounded uniformly in h and supported in
B(p, ι) where ι is chosen smaller than the injectivity radius. It follows that we can
write

(3.8)

Lh(χout)
w
h,δ(x

′, hDx′)ϕH
h =

T−1
h ◦ h∗−(n−1)/2

∫

ei(y−y′′)·η/heiΦ(y′′,y′,v)/he−idist(y′,x)/h

×χ+(η1/h
δ)a1(y

′′, y′, v, h)a2(x, y
′, h)ϕh(x) dy

′ dv dy′′ dx dη +O(h∞).

The point of expressing ϕh in terms of itself is that we then have an explicit rep-
resentation of ϕH

h = γHχh−1ϕh in terms of a oscillatory kernel with phase function
dist(y′, x), which has oscillations of semiclassical frequency ≤ 1. On the other hand,
the χ+ term is supported where the semiclassical frequencies are at least 1+hδ. So
the phase in (3.8) should be nonstationary on the support of the integral, allowing
us to perform integration by parts in the above integral.
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Let Ψ denote the sum of the phase functions in (3.8). Then, since Φ parametrizes
the canonical relation

{

(y′′, η′′, y′, η′) | (y′′, η′′) = ρ(y′, η′)
}

,

where η′, respectively η′′, denotes the dual variable to y′ ∈ H, respectively y′′ ∈
R

n−1, we have

(3.9)

dvΨ = 0 =⇒ ρ(y′,−dy′Φ(y′′, y′, v)) = (y′′, dy′′Φ(y′′, y′, v))

dy′′Ψ = 0 =⇒ η = dy′′Φ(y′′, y′, v)

dy′Ψ = 0 =⇒ dy′Φ(y′′, y′, v) = dy′dist(y′, x).

Putting these together we find that

dv,y′′,y′Ψ = 0 =⇒ ρ(y′,−dy′dist(y′, x)) = (y′′, η).

Since we chose ρ such that ρ∗η1 = |η′|2g̃ − 1, this shows that

dv,y′′,y′Ψ = 0 =⇒ η1 =
∣

∣

∣
dy′dist(y′, x)

∣

∣

∣

2

g̃
− 1.

It follows that we can write

(3.10) η1 + 1−
∣

∣

∣
dy′dist(y′, x)

∣

∣

∣

2

g̃
=

∑

i

(

γidvi
Ψ+ γ′idy′

i
Ψ+ γ′′i dy′′

i
Ψ
)

,

where the γi, γ
′
i, γ

′′
i are smooth.

Now consider (x, y′) such that y′ ∈ H and (x, y′, 0) is in the support of a2.
For such (x, y′), we denote by e the unit vector in Ty′M that generates the short
geodesic between y′ and x, and write θ = θ(x, y′) for the angle in TM (measured
using the metric g) between the vector e and the normal vector to H at y′. By
construction, x and y′ cannot be closer than (2C0)

−1ǫ0 together, so θ is a smooth
function of x and y′. Then we can express

∣

∣

∣
dy′dist(y′, x)

∣

∣

∣

2

g̃
= sin2 θ.

Using (3.10) we have

(3.11)
(h

i

γidvi
+ γ′idy′

i
+ γ′′i dy′′

i

η1 + cos2 θ

)N

eiΨ(x,y,y′,y′′,θ,η)/h = eiΨ(x,y,y′,y′′,θ,η)/h.

We insert this in (3.8) and integrate by parts N times. The derivatives are harmless
(in the sense that they produce no negative powers of h) when they hit the factors
a1a2χ+(η1/h

δ) or the γ′i, γ
′′
i , γ

′′′
i (note that there are no η derivatives to fall on the

χ+ factor). However, since θ is a function of (x, y′), the y′ derivatives can hit the
denominator of (3.11) and then we have to estimate more carefully. Consider a
single y′ derivative hitting the cos2 θ factor in the denominator of (3.11). In that
case, we get an overall factor

(3.12) h
2 cos θ sin θ

∑

i γ
′
idy′

i
θ

(η1 + cos2 θ)2
.

Notice that on the support of χ, we have η1 ≥ hδ/2. The denominator can therefore
be small when cos θ is small. However, notice that we also have a factor of cos θ
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in the numerator. We can estimate this term as follows: either cos θ ≤ hδ/2 or
cos θ ≥ hδ/2. In the former case, we get that (3.12) is bounded by

Ch
hδ/2

h2δ
= Ch1−3δ/2.

In the latter case, we find that (3.12) is bounded by

Ch
cos θ

cos4 θ
≤ Ch1−3δ/2.

In either case, we gain a positive power of h for each integration by parts provided
that δ < 2/3. Higher numbers of y′ derivatives hitting either the denominator in
(3.11) or the cos θ factors in (3.12) can be estimated similarly. Thus, by integrating
by parts sufficiently many times, we prove that for any N we have

Lh(χout)
w
h,δ(x

′, hDx′)ϕH
h = O(hN ), provided δ < 2/3.

In the case where the submanifold H is totally geodesic, i.e. its second funda-
mental form vanishes, we can see by inspecting the proof that we can prove Propo-
sition 3.1 for all δ < 1. To see this, consider the quantity dy′θ from (3.12). Let
n = ny′ denote the unit normal vector at y′ ∈ H, and let ex denote the unit length
vector field pointing away from x, that is, in the direction of geodesics emanating
from x. Thus cos θ = ny′ · ex. If we differentiate in y′ we find that

−(sin θ)dy′θ = ∇y′

(

ny′ · ex
)

.

Suppose that cos θ = 0. Then sin θ = 1, so this factor can be ignored. More impor-
tantly, if ex is normal to ny′ , or equivalently tangent to H, then H totally geodesic
means that the whole geodesic generated by ex is contained in H. In particular,
this implies that x ∈ H and the vector field ex is tangent to H. Therefore, ny′ · ex
vanishes identically. So this derivative is zero.

It follows that dy′θ = 0 when cos θ = 0. Since cos θ vanishes simply, this implies
that dy′θ = k(x, y′) cos θ for some smooth function k. Thus in the case that H is
totally geodesic, we get an extra factor of cos θ in the numerator of (3.12), leading
to the conclusion that (3.12) can be estimated by a constant times h1−δ. Hence, in
this case, we can take any δ < 1.

�

Corollary 3.2. The conclusion of Proposition 3.1 can be strengthened to

(3.13) (χout)
w
h,δϕ

H
h = O(h∞) in Ck(H)

for any k ∈ N.

Proof. We apply l derivatives to Lh(χout)
w
h,δ(x

′, hDx′)ϕH
h . This brings down a

factor of h−l. Applying the argument above shows that the result is OL2(h∞). The
Sobolev embedding theorem then gives (3.13), provided l > k + (n− 1)/2. �

Remark. It is worth noting that the upper limit of 2/3 on the size of δ is sharp.
Consider the example of the unit disc in the plane, e.g. the set {r < 1} in standard
polar coordinates. Let H be the circle {r = 1/2}. Dirichlet eigenfunctions with
eigenvalue λ2 take the form fn = cne

inθJn(λr), where Jn is the standard Bessel
function of order n, and where Jn(λ) = 0. There are pairs (n, λ) where

λ− 2n ∈ [−z1n1/3,−z2n1/3], z1, z2 > 0.
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That is, 2n is a bit bigger than λ, by an amount zλ1/3 where z ∈ [z1, z2]. This
means that, at H, that is, when r = 1/2, we are near the turning point of fn, where
fn has Airy asymptotics given by [AS, 9.3.43]. Normalizing the eigenfunction in L2

requires that cn ∼ n1/6. Applying a semiclassical derivative means we gain a factor
n−1/3 since this is the length scale on which solutions of Bessel’s equation oscillate
near the turning point. This implies that

f ′n(n− zn1/3) ∼ n−1/6Ai(21/3z),

where Ai is the Airy function. In particular, we see that on H, the restriction of
an eigenfunction can contain semiclassical frequencies of the size 1 + zh2/3, z > 0,
which decay only polynomially as h→ 0. However, the rapid decay of solutions of
Airy’s equation as z → ∞ means that frequencies of the size 1 + ch2/3−ǫ, c > 0,
ǫ > 0, decay rapidly as h→ 0, in agreement with Proposition 3.1.

Remark. It is interesting to contrast the sharpness of the exponent δ = 2/3 in
mass concentration on H with the situation on M . In the case of M , (see (3.3)) a
parametrix computation using the 2-microlocal calculus associated to S∗M shows
that the exterior mass of eigenfunctions in the region where |ξ|g ≥ 1+Chδ is O(h∞)
for any δ < 1. When H is totally geodesic, the same is true for the exterior mass of
the restricted eigenfunctions ϕh|H . However, when H has positive definite second
fundamental form, the disc example above shows that one must restrict to the range
0 ≤ δ < 2/3.

4. Improved Neumann estimate

In this section, we return to the computation started in the introduction. We
have

i

h

∫

M−

[−h2∆− 1,χ(xn)hDn]ϕhϕhdx

=

∫

H

((hDn)
2ϕh)|Hϕh|HdσH +

∫

H

(hDnϕh)|HhDnϕh|HdσH .(4.1)

and, as outlined in the Introduction, this yields

(4.2)

∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH +

∫

H

|ϕH,ν
h |2dσH = O(1).

In order to bound the Neumann data from above, we therefore need to show the
first term on the left hand side is essentially positive.

For this we now use our small scale decomposition. Let χin, χtan, χout be as
before, and

1 = (χin)
w
h,δ + (χtan)

w
h,δ + (χout)

w
h,δ
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be the corresponding 2-microlocal partition of unity, with δ chosen in the range
(1/2, 2/3). We have
∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH

=

∫

H

(1 + h2∆H)(χin)
w
h,δϕ

H
h ϕ

H
h dσH +

∫

H

(1 + h2∆H)(χtan)
w
h,δϕ

H
h ϕ

H
h dσH

+

∫

H

(1 + h2∆H)(χout)
w
h,δϕ

H
h ϕ

H
h dσH

=

∫

H

(1 + h2∆H)(χin)
w
h,δϕ

H
h ϕ

H
h dσH +

∫

H

(1 + h2∆H)(χtan)
w
h,δϕ

H
h ϕ

H
h dσH

+O(h∞)

where we used Proposition 3.1 (or really Corollary 3.2) in the last line.
As estimated previously, on the support of χin, we have 1 − R(x′, 0, ξ′) ≥ hδ.

Without loss in generality, assume χin = ψ2 for some ψ ≥ 0,

ψ = ψ((R(x′, 0, ξ′)− 1)/hδ) ∈ S0
ΣH ,δ.

Let χ̃ ∈ S0
ΣH ,δ satisfy χ̃ ≡ 1 on suppχin with slightly larger support, say on a set

where 1−R(x′, 0, ξ′) ≥ hδ/M for some large M . Observe that then

ℓ = (1− χ̃) + h−δχ̃ · (1−R(x′, 0, ξ′)) ∈ Sδ
ΣH ,δ

satisfies ℓ ≥ c0 > 0. If L = ℓw, then the G̊arding inequality (Lemma 2.4) implies

〈Lu, u〉 ≥ (c0 − Ch1−δ)‖u‖2.

Further,

Lχw
inϕ

H
h = L(ψw)∗ψwϕH

h

= (ψw)∗LψwϕH
h + [L, (ψw)∗]ψwϕH

h .

Since, on the support of ψ, ℓ = h−δ(1 − R), L commutes to leading order with ψ,
so a crude estimate on the commutator gives

‖[L, (ψw)∗]ψwϕH
h ‖ = O(h−δh3(1−δ))‖ϕH

h ‖.

The powers of h in this estimate come from h−δ in the definition of ℓ, and 3 powers
of h1−δ because derivatives can lose h−δ, and in the Weyl calculus, the second order
term in the commutator vanishes by anti-symmetry. Hence

〈

(1 + h2∆H)(χin)
wϕH

h , ϕ
H
h

〉

= hδ
〈

L(χin)
wϕH

h , ϕ
H
h

〉

+O(h∞)‖ϕH
h ‖2

= hδ
〈

(ψw)∗LψwϕH
h , ϕ

H
h

〉

+O(h3−3δ)‖ϕH
h ‖2

= hδ
〈

LψwϕH
h , ψ

wϕH
h

〉

+O(h3−3δ)‖ϕH
h ‖2

≥ hδ(c0 − Ch1−δ)‖ψwϕH
h ‖2 − Ch3−3δ‖ϕH

h ‖2.

On the other hand, on the support of χtan, we have |1−R(x′, 0, ξ′)| ≤ C2h
δ, so

that
∣

∣

∣

∣

∫

H

(1 + h2∆H)(χtan)
w
h,δϕ

H
h ϕ

H
h dσH

∣

∣

∣

∣

≤ C2h
δ‖ϕH

h ‖2.
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Combining these two estimates, we have
∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH

≥ C1h
δ

∫

H

(χin)
w
h,δϕ

H
h ϕ

H
h dσH − C ′

1h
3−3δ‖ϕH

h ‖2

− C2h
δ‖ϕH

h ‖2 +O(h∞)

≥ −Chδ
∫

H

|ϕH
h |2dσH ,

since the exterior term is O(h∞), and provided 3−3δ ≥ δ, or δ ≤ 3/4 (recall we have
already assumed δ < 2/3). Employing the h−1/4 bound of Burq-Gérard-Tzvetkov
[BGT], we get

∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH ≥ −Chδ−1/2.

Since we chose δ > 1/2, this gives, in combination with (4.2),

− Chδ−1/2 +

∫

H

|ϕH,ν
h |2dσH

≤
∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH +

∫

H

|ϕH,ν
h |2dσH

= O(1),

or, rearranging,
∫

H

|ϕH,ν
h |2dσH = O(1),

which proves Theorem 1.

Remark. Notice that this computation also shows that
∫

H

(1 + h2∆H)ϕH
h ϕ

H
h dσH = O(1)

since all the other terms in (4.2) are O(1).

5. Schrödinger eigenfunctions: proof of Theorem 2

Given the semiclassical Schrödinger operator P (h) = −h2∆g + V (x), we denote
the principal symbol by p(x, ξ) = |ξ|2g + V (x). In the following, we work in a
collar neighbourhood around H and continue to denote the corresponding Fermi
coordinates by (x′, xn) with H = {xn = 0}. Given a regular energy value E ∈ R,
we let Σ(E) = {(x, ξ) ∈ T ∗M ; p(x, ξ) = E} be the corresponding level set and

ΣH(E) = {(x′, ξ′) ∈ T ∗H; p(x′, 0; ξ′, 0) = E}
be the restriction to T ∗H. SinceH ⊂ {x ∈M ;V (x) < E}, it follows that dξ′p(x′, ξ′) 6=
0 for all (x′, ξ′) ∈ ΣH(E) and so the level set ΣH(E) ⊂ T ∗H is a smooth hypersur-
face. Consider L2-normalized eigenfunctions ϕh ∈ C∞(M) with

(5.1) P (h)ϕh = E(h)ϕh, |E(h)− E| = O(h).

The relevant semiclassical 2-microlocal cutoffs to ΣH(E) are

(χout,in,tan)
w
h,δ = Opwh χout,in,tan

( |ξ′|2g + V (x′, 0)− E

hδ

)

, 0 ≤ δ < 1.
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Since ΣH(E) ⊂ T ∗H is a hypersurface of real principal type, there is a natural
symbol calculus for these operators just as in subsection 2.2.2 with the associ-
ated sharp G̊arding and L2-boundedness results. As in Lemma 2.3, the key here
is a local normal form result which says that there are compactly-supported h-
pseudodifferential operators Lh ∈ Opwh (S

0,−∞(T ∗H)) and intertwining, compactly-
supported h-Fourier integral operator Th : C∞

0 (T ∗H) → C∞
0 (Rn−1) with the prop-

erty that with χ = χtan,in,out,

(5.2) ThLhχ
w
h,δT

−1
h = χw

h

( η1
hδ

)

.

The proof of Theorem 2 follows as in the homogeneous case with one minor change
regarding the exterior restricted eigenfunction mass estimates on hδ-scales which
we now explain.

5.1. Exterior mass estimates. The main change we need to make is to replace
Sogge’s approximate projection operator χλ by the corresponding operator depend-
ing on the potential V . To this end, we define the action A(x, y), for x, y ∈ M
sufficiently close, to be the integral of the quantity L(x, ξ) := |ξ|2g − V (x) along a
bicharacteristic of P starting at (y, η) and ending at (x, ξ), contained in the energy
surface {p = E}. (Note that for x 6= y sufficiently close, there is a unique η such
that there is a short bicharacteristic starting at (y, η) and reaching T ∗

xM — see
the proof of the lemma below.) Due to our condition that V < E on H, A is
comparable to the distance function when x, y are sufficiently close to each other
and to H. We then have:

Lemma 5.1. Let χ be a Schwartz function with χ(0) = 1 and with Fourier trans-
form χ̂ having support in the interval [ǫ0/2, ǫ0] for sufficiently small ǫ0. Then the
operator

χV,λ := χ
(P (h)− E

2h

)

has kernel of the form

(5.3) χV,λ(x, y) = λ(n−1)/2a3(y, x, λ)e
−iλA(x,y) +R(x, y, λ), λ = h−1,

where a3 is supported where A(x, y) ∈ [(2C0)
−1ǫ0, 2C0ǫ0] for some C0 > 1, and R

is smooth with all derivatives O(λ−N ) for every N .

Proof. We express χV,λ in terms of the semiclassical propagator:

(5.4) χV,λ = (2π)−1

∫ ∞

0

eit(P (h)−E)/2hχ̂(t) dt.

The operator H(t)eitP (h)/2h, where H(t) is the Heaviside function, is the forward
fundamental solution for the operator 2hDt − P (h), and its microlocal structure is
well understood. It is associated to two Lagrangian submanifolds Λ0 and Λ, where
Λ0 is the conormal bundle to {t = 0, x = y} ⊂ T ∗(M×R) and Λ is the flowout, in the
direction of positive time, from the intersection of Λ0 and the characteristic variety
ΣV of 2hDt − P (h). This flowout is, by definition, the union of bicharacteristics
starting at ΣV ∩ Λ0, and satisfying the ODE

(5.5)

ṫ = 2 τ̇ = 0

ẋ = −∂p
∂ξ

ξ̇ =
∂p

∂x

ẏ = 0 η̇ = 0.



EXTERIOR MASS ESTIMATES AND NEUMANN DATA 17

It is not hard to see from this that (x, y, t) form coordinates on Λ for t > 0 small.
Indeed, it is clear that (y, η, t) form coordinates, since (y, η) form coordinates on
Λ∩Λ0 and t can be used as a parameter along bicharacteristics. On the other hand,
the equations above show that

(5.6) xi(t) = t
∑

j

gij(x)ηj +O(t2)

showing that ∂x/∂η is nonsingular for t > 0 small, so we may take (x, y, t) instead
of (y, η, t). So there is a unique function Φ(x, y, t), smooth for t > 0 parametrizing
Λ locally near x = y. Moreover, the value of Φ is given by Hamilton-Jacobi theory,
by solving the ODE along bicharacteristics

(5.7) Φ̇ = −ξ · ∂p
∂ξ

− 2τ + p = −
(

gij(x)ξiξj − V (x)
)

− 2τ = −L(x, ξ)− 2τ

with initial value Φ = 0 at Λ0 ∩ ΣV .
We now put this expression into (5.4) to obtain the kernel of χV,λ:

(5.8) χV,λ = (2π)−1(2πh)−n/2

∫ ∞

0

eiΦ(x,y,t)/hb(x, y, t, h)e−it/2hχ̂(t) dt.

We claim that ∂2ttΦ 6= 0 for t > 0 small. To see this write τ(x, y, t) and η(x, y, t)
for the value of τ , respectively η, on Λ at the point parametrized by (x, y, t). Then
dtΦ = τ(x, y, t), so we need to show that dtτ 6= 0. We can rotate coordinates so
that gij(y) is diagonal at y0 and η(x0, y0, t0) is a multiple of (1, 0, . . . , 0). Write
x as a function x = X(y, η2, . . . , ηn, τ, t) since η1 is determined by η2, . . . , ηn, τ on
Λ ⊂ ΣV , and since x is determined by following the bicharacteristic starting at
(y, η) for time t. Then we have

0 =
dx

dt
=

n
∑

j=2

∂X

∂ηj

∂ηj
∂t

+
∂X

∂τ

∂τ

∂t
+
∂X

∂t
.

We have |∂tX| =
√
E − V , which is bounded away from zero using our assumption

on V . On the other hand, ∂ηj
X = O(t + |y − y0|) for j ≥ 2 and for (x, y, t) near

(x0, y0, 0) using (5.6) and the assumptions on gij(y0) and η(x0, y0, t0). It follows
from the above identity that ∂tτ 6= 0 for small t, showing that ∂2ttΦ 6= 0, as claimed.
So we can perform stationary phase in the t variable in (5.8), obtaining the phase
function

Φ(x, y, t(x, y))− Et(x, y)

2
where t(x, y) is the stationary point. Note that stationarity in t requires that
τ = E/2, which implies that p = E since Λ is contained in ΣV . Inserting this in
(5.7) and using the constancy of τ along bicharacteristics gives the value

Φ(x, y, t(x, y)) = −A(x, y) + Et(x, y)

2

according to the definition of the action A above. This shows that the phase function
is as claimed in the lemma. The power of λ follows from (5.8) and stationary phase
in t, and the properties of a3 and of R follow as in the homogeneous case. �

Remark. The form of the parametrix for eit(P (h)−E)/2h in (5.8) also follows from
the more standard integral representation with phase S(t, x, η) − y · η (see [Zw,
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Section 10.2]) by stationary phase in η for t ∈ [(2C0)
−1ǫ0, 2C0ǫ0] with ǫ0 > 0 suffi-

ciently small. Here, S(t, x, η) solves the Hamilton-Jacobi equation ∂tS = p(x, dxS)
with S(0, x, η) = x · η.
Remark. The reason for choosing the factor 2 in the denominator of the expression
χ
(

(P (h)−E)/2h
)

is to match as closely as possible to Sogge’s approximate projec-

tion operator χλ = χ(
√
∆−λ). This could be written χ

(

(∆−λ2)/(
√
∆+λ)

)

, which

is very close to χ
(

(∆ − λ2)/2λ
)

when
√
∆ is localized close to λ. In semiclassical

notation this is χ
(

(h2∆− 1)/2h
)

.

Remark. The same representation (5.3) holds for the operator χ
(

(P (h)−E(h))/2h
)

,
where E(h) lies in the interval [E−Ch,E+Ch]. This is clear since replacing E with
E+ch amounts to a translation of χ, or equivalently a modulation of χ̂, which does
not change any essential properties of χ. Moreover, all statements in Lemma 5.1
hold uniformly for c ∈ [−C,C].

Now we follow the argument of Section 3.2 almost verbatim. Using the identity

χ
(P (h)−E(h)

h

)

ϕh = ϕh and with the same notation as in section 3.2, one has the
local formula

Lh(χout)
w
h,δ(x

′, hDx′)ϕH
h = h∗T−1

h ◦
∫

ei(y−y′′)·η/heiΦ(y′′,y′,v)/he−iA(y′,x)/h(5.9)

×χ+(η1/h
δ)a1(y

′′, y′, v, h)χ̂(t)a3(y
′, x, h)ϕh(x) dy

′ dv dy′′ dx dη +O(h∞).

Let Ψ denote the sum of the phase functions in (5.9). We integrate by parts in
(y′, y′′, v) and we compute the critical set in these variables:

(5.10)

dvΨ = 0 =⇒ ρ(y′,−dy′Φ(y′′, y′, v)) = (y′′, dy′′Φ(y′′, y′, v))

dy′′Ψ = 0 =⇒ η = dy′′Φ(y′′, y′, v)

dy′Ψ = 0 =⇒ dy′Φ(y′′, y′, v) = dy′A(y′, x).

This implies that ρ(y′,−dy′A) = (y′′, η) with ρ∗η1 = |ξ′|2g + V (y′, 0)− E and so,

dv,y′,y′′Ψ = 0 =⇒ η1 = |dy′A|2g + V (y′, 0)− E.

Taylor expansion yields smooth functions γi, γ
′
i, γ

′′
i ; 1 ≤ i ≤ n− 1 with

eiΨ(x,y,y′,y′′,t,rω,η)/h

=
(h

i

)N

·
( γidvi

+ γ′idy′

i
+ γ′′i dy′′

i

η1 − (|dy′A|2g + V (y′, 0)− E)

)N

eiΨ(x,y,y′,y′′,v,η)/h

=
(h

i

)N

·
(γidvi

+ γ′idy′

i
+ γ′′i dy′′

i

η1 + |dyn
A|2

)N

eiΨ(x,y,y′,y′′,v,η)/h(5.11)

since A satisfies the Hamilton-Jacobi equation |dyn
A|2 + |dy′A|2g = E − V .

As in the homogeneous case, using (5.11), we integrate by parts. Differentiation
in the v, y′′ coordinates is harmless in that it does not produce any singular be-
haviour in h. Differentiation in the y′-variables is more subtle in the case where the
dy′ derivatives hit the term in the denominator in (5.11) involving dyn

A, one must
bound a ratio of the form

(5.12)
h |dyn

A| · |dy′dyn
A|

(

η1 + |dyn
A|2

)2 .
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Here, |dyn
A|2 plays the role of cos2 θ in the homogeneous case. We split (5.12) into

the two cases |dyn
A| ≥ hδ/2 and |dyn

A| ≤ hδ/2. In both cases, we get an O(h1−3δ/2)
bound for (5.12) and this imposes the constraint that δ < 2/3 as in Proposition
3.1. To summarize, as in the homogeneous case,

(5.13) (χout)
w
h,δϕ

H
h = O(h∞) in L2(H).

As for the Rellich formula analogue of (4.1), we note that the real-valued po-
tential V cancels in Green’s formula to give precisely the same RHS as in (4.1).
Indeed, since V ∈ C∞(M ;R) and (−h2∆+ V − E(h))ϕh = 0,

i

h

∫

M−

[−h2∆+ V − E(h), χ(xn)hDn]ϕhϕhdx

=

∫

H

((hDn)
2ϕh)|Hϕh|HdσH +

∫

H

(hDnϕh)|HhDnϕh|HdσH .(5.14)

Given the mass estimate in (5.13), the G̊arding and L2-boundedness results in
the 2-microlocal operator calculus and the commutator formula in (5.14), the rest
of the proof of Theorem 2 follows in the same way as in Theorem 1. �

6. Optimality of Theorem 1

In this section, we show that the Neumann data restriction estimate in Theorem
1 is optimal in the case of a highest weight spherical harmonic. To fix our notation,
we consider M = S

2 with the parametrization in R
3:

(x1, x2, x3) = (sinϕ cos θ, sinϕ sin θ, cosϕ),

where 0 ≤ ϕ ≤ π is the angle from the north pole and 0 ≤ θ ≤ 2π is the angle in the
x1x2 plane measured from the x1 axis. The induced metric is the usual spherical
metric:

g = dϕ2 + sin2 ϕdθ2,

and the volume form is

dV = sinϕdϕdθ.

The Laplacian is the usual angular part of the polar Laplacian:

−∆g = − 1

sinϕ
∂ϕ sinϕ∂ϕ − 1

sin2 ϕ
∂2θ .

The eigenfunctions for−∆g are homogeneous harmonic polynomials in R
3 restricted

toM . The highest weight harmonic of order k is given by restricting the polynomial
(x2 + ix1)

k to M . Let

uk = (x2 + ix1)
k|M = ik sink ϕe−ikθ.

As an eigenfunction, it satisfies

−∆guk = k(k + 1)uk.
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As written, uk is of course not normalized. Let us compute

‖uk‖2L2(M) =

∫ 2π

0

∫ π

0

|uk|2 sinϕdϕdθ

=

∫ 2π

0

∫ π

0

sin2k+1 ϕdϕdθ

= 2π

∫ π

0

sin2k+1 ϕdϕ,

which, after a computation, is seen to be equal to

4π

(

2k

2k + 1

)(

2k − 2

2k − 1

)(

2k − 4

2k − 3

)

· · ·
(

2

3

)

.

There is an orthonormal basis of the tangent space at any point of M given by
the vectors

X =
1

sinϕ
∂θ, and Y = ∂ϕ,

since g(X,X) = g(Y, Y ) = 1 and g(X,Y ) = 0. If we let H ⊂ M be the periodic
geodesic in the x1x3 plane originating from the north pole, then H is parametrized
by

(x1, x2, x3) = (sinϕ, 0, cosϕ),

for 0 ≤ ϕ ≤ 2π. Notice there is no ambiguity with our chart by taking ϕ in this
extended range since we have frozen θ = 0. Clearly the vector Y is tangent to H, so
the normal derivative of uk will be given byXuk. We want to compute ‖Xuk‖L2(H).

The induced metric on H is the usual circle metric dϕ2, so the volume form is just
dϕ. We compute:

Xuk = ik−1k sink−1 ϕe−ikθ.

Hence we want to compute

‖Xuk‖2L2(H) =

∫ 2π

0

k2 sin2k−2 ϕdϕ.

Another long computation shows this to be equal to

k2π

(

2k − 3

2k − 2

)(

2k − 5

2k − 4

)(

2k − 7

2k − 6

)

· · ·
(

3

4

)

.

In order to show Theorem 1 is sharp, we are interested in bounding the ratio

‖Xuk‖2L2(H)

k2‖uk‖2L2(M)
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from below. We compute

‖Xuk‖2L2(H)

k2‖uk‖2L2(M)

=
π
(

2k−3
2k−2

)(

2k−5
2k−4

)(

2k−7
2k−6

)

· · ·
(

3
4

)

4π
(

2k
2k+1

)(

2k−2
2k−1

)(

2k−4
2k−3

)

· · ·
(

2
3

)

=
1

4
(

2k
2k+1

)(

2k−2
2k−1

)

k−2
∏

j=1

(

2k−2j−1
2k−2j

)

(

2k−2j−2
2k−2j−1

)

=
1

4
(

2k
2k+1

)(

2k−2
2k−1

)

k−2
∏

j=1

(2k − 2j − 1)
2

(2k − 2j − 2) (2k − 2j)
.

We observe that (2k − 2j − 1)2 = (2k − 2j − 2)(2k − 2j) + 1, so each factor in the
product is bounded below by 1. Hence the whole product is bounded below by a
positive constant, independent of k. This shows Theorem 1 is sharp.

Remark. In fact, Theorem 1 is sharp for any Riemannian manifold (M, g) and
any hypersurface H. To see this, we note that standard wave equation methods
give an asymptotic of the form

∑

j

ρ(λ− λj)
∣

∣ϕH,ν
h (x)

∣

∣

2 ∼ λn−1

n vol(M)
,

where ρ is a function with smooth compactly supported Fourier transform, with
ρ̂(t) = 1 for t in a neighbourhood of 0. See for example [Ho]. This implies that for
a sufficiently large C,

∑

λj∈[λ,λ+C]

∣

∣ϕH,ν
h (x)

∣

∣

2 ≥ cλn−1.

Integrating over H we find that
∑

λj∈[λ,λ+C]

∥

∥ϕH,ν
h

∥

∥

2

L2(H)
≥ cλn−1.

Since the number of λj in the range [λ, λ+C] is at most C ′λn−1, we can choose for

each m an eigenfunction ϕλj
such that λj ∈ [m,m+C] and

∥

∥ϕH,ν
h

∥

∥

2

L2(H)
≥ c′ > 0,

showing the optimality of Theorem 1 for (M, g) and H.

References

[AS] Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. U.S. National
Bureau of Standards, 1964.

[Bur] Burq, N., Quantum ergodicity of boundary values of eigenfunctions: a control theory
approach. Canad. Math. Bull. 48 (2005), no. 1, 3–15.

[BGT] Burq, N., Gérard, P., and Tzvetkov, N. Restrictions of the Laplace-Beltrami eigen-
functions to submanifolds. Duke Math. J. 138 (2007), no. 3, 445-486.

[CTZ] Christianson, H., Toth, J.A., and Zelditch, S. Quantum Ergodic Restriction

for Cauchy Data: Interior QUE and Restricted QUE. Math. Res. Lett. (to appear)
(arXiv:1205.0286).

[CTZ2] Christianson, H., Toth, J.A., and Zelditch, S. δ-Quantum Ergodicity and Restric-
tions of Eigenfunctions in preparation.

[HT] Hassell, A. and Tao, T. Upper and lower bounds for normal derivatives of Dirichlet
eigenfunctions. Math. Res. Lett. 9 (2002), no. 2–3, 289-305.
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