
NEAR SHARP STRICHARTZ ESTIMATES WITH LOSS IN THE

PRESENCE OF DEGENERATE HYPERBOLIC TRAPPING

HANS CHRISTIANSON

Abstract. We consider an n-dimensional spherically symmetric, asymptot-
ically Euclidean manifold with two ends and a codimension 1 trapped set
which is degenerately hyperbolic. By separating variables and constructing a
semiclassical parametrix for a time scale polynomially beyond Ehrenfest time,
we show that solutions to the linear Schrödinger equation with initial con-
ditions localized on a spherical harmonic satisfy Strichartz estimates with a
loss depending only on the dimension n and independent of the degeneracy.
The Strichartz estimates are sharp up to an arbitrary β > 0 loss. This is
in contrast to [CW11], where it is shown that solutions satisfy a sharp local
smoothing estimate with loss depending only on the degeneracy of the trapped
set, independent of the dimension.

1. Introduction

It is well known that there is an intricate interplay between the existence of
trapped geodesics, those which do not escape to spatial infinity, and dispersive esti-

mates for the associated quantum evolution. Trapping can occur in many different
ways, from a single trapped geodesic (see [Bur04, BZ04, Chr07, Chr11, Chr08b]),
to a thin fractal trapped set (see [NZ09,Chr09,Chr08a,Dat09]), to codimension 1
trapped sets in general relativity (see, for example, [BS03,BH08,DR09,MMTT10,
Luk10,TT11,LMar,WZ10] and the references therein), to elliptic trapped sets and
boundary value problems. Dispersive type estimates also come in many flavors,
but are all designed to express in some manner that the mass of a wave function
tends to spread out as the wave function evolves. Since the mass of wave functions
tends to move along the geodesic flow, the presence of trapped geodesics suggests
some residual mass may not spread out, or may spread out more slowly than in
the non-trapping case. In this paper, we concentrate on Strichartz estimates, and
exhibit a class of manifolds for which we prove near-sharp Strichartz estimates (for
solutions localized along a single spherical harmonic) with a loss depending only
on the dimension. This class of manifolds has already been studied in [CW11],
where a sharp local smoothing estimate (for any initial data) is obtained with a
loss depending only on how flat the manifold is near the trapped set. This suggests
an interesting dichotomy conjecture: “loss in local smoothing depends only on the
kind of trapping, while loss in Strichartz estimates depends only on the dimension
of trapping”.

The purpose of this paper is to study a very simple class of manifolds with a
hypersphere of trapped geodesics. If the dynamics near such a sphere are strictly
hyperbolic in the normal direction, then resolvent estimates are already obtained
in [WZ10] (see also [Chr08b, Chr08a]) which can be used to prove local smooth-
ing estimates with only a logarithmic loss. However, if the dynamics are only
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weakly hyperbolic, resolvent estimates and local smoothing estimates are obtained
in [CW11] with a sharp polynomial loss in both. We now turn our attention to
studying Strichartz estimates, which are mixed LpLq time-space estimates. The
typical procedure for proving Strichartz estimates is to construct parametrices (ap-
proximate solutions), which encode how wave packets move with the geodesic flow.
For solutions of the Schrödinger equation, wave packets at higher frequency move
at a higher velocity, so the presence of trapping, or more precisely of conjugate
points means that parametrices can typically be constructed only for time intervals
depending on the frequency of the wave packet. Then summing up many paramet-
rices to get an estimate on a fixed time scale leads to derivative loss in Strichartz
estimates.

However, if the trapped set is sufficiently thin and hyperbolic, we expect that
most of a wave packet still propagates away quickly, and a procedure developed
by Anantharaman [Ana08] allows one to exploit this to logarithmically extend the
timescale on which one can construct a parametrix leading to Strichartz estimates
with no loss [BGH10].

For the manifolds studied in this paper, the trapping is degenerately hyperbolic,
so we still expect some mass of each wave packet to propagate away, but at a much
slower rate than the strictly hyperbolic case. As a consequence, we need to ex-
tend the parametrix polynomially in time to get sharp estimates. The techniques
in [Ana08,BGH10] will not work in this situation since the O(h∞) estimate of de-
caying correlations will not control the exponential number of such correlations. In
this paper, we fail to prove estimates all the way to the sharp polynomial timescale,
but we are nevertheless able to extend the parametrix construction to the sharp
timescale up to an arbitrary β > 0 loss, which is expressed as a loss in deriva-
tive in the main theorem. Further, the technique of proof involves decomposing
the solution in terms of spherical harmonics in order to reduce the problem to a
1-dimensional semiclassical parametrix construction. Lacking a square-function es-
timate for spherical harmonics, the proof only works for initial data localized along
one spherical harmonic eigenspace. In this sense, the result shows more about the
natural semiclassical timescale, polynomially extended beyond Ehrenfest time, for
which we have good control of the rate of dispersion.

We begin by describing the geometry. We consider X = Rx × S
n−1
θ , equipped

with the metric
g = dx2 +A2(x)Gθ ,

where A ∈ C∞ is a smooth function, A > ǫ > 0 for some epsilon, and Gθ is the
metric on S

n−1. From this metric, we get the volume form

dVol = A(x)n−1dxdσ,

where σ is the usual surface measure on the sphere. The Laplace-Beltrami operator
acting on 0-forms is computed:

∆f = (∂2
x +A−2∆Sn−1 + (n− 1)A−1A′∂x)f,

where ∆Sn−1 is the (non-positive) Laplace-Beltrami operator on the sphere.
We study the case A(x) = (1 + x2m)1/2m, m > 2, in which case the manifold is

asymptotically Euclidean (with two ends), and has a trapped hypersphere at the
unique critical point x = 0. Since A(x) has a degenerate minimum at x = 0, the
trapped sphere is weakly normally hyperbolic in the sense that it is unstable and
isolated, but degenerate (see Figure 1).
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Our main theorem is the following, which expresses that a solution of the linear
homogeneous Schrödinger equation on this manifold satisfies Strichartz estimates
with loss depending only on the dimension n, up to an arbitrary β > 0 loss.

Theorem 1. Suppose u solves

(1.1)

{
(Dt + ∆)u = 0,

u|t=0 = u0,

where u0 = Hku0 is localized on the spherical harmonic subspace of order k. Then

for any T, β > 0, there exists CT,β > 0 such that

(1.2) ‖u‖Lp([0,T ])Lq(M) 6 CT,β‖ 〈Dθ〉(n−2)/pn+β u0‖L2(M),

where
2

p
+
n

q
=
n

2
,

and 2 6 q <∞ if n = 2.

Remark 1.1. There are several important observations to make about Theorem
1. First, this theorem concerns endpoint Strichartz estimates. In dimension n > 3,
if we take β < 1/n, the loss in derivative is then (n − 2)/2n + β < 1/2; that
is, the loss is always less than the loss following the argument of Burq-Gérard-
Tzvetkov [BGT04] (which gives a loss of 1/2 for endpoint estimates in n > 3).
Second, there is only a β > 0 loss over the Euclidean (scale-invariant) estimates if
n = 2, that is, if the trapped set is a single degenerate periodic geodesic, so we can
get as close to the no-loss estimates as we like. We expect the β > 0 derivative
loss can actually be removed in all dimensions, but this is beyond our techniques.
Third, in all dimensions, the loss depends only on the dimension of the trapped set.
It does not depend on m, the order of degeneracy of the trapping. This is in sharp
contrast to the local smoothing effect, which depends only on m, and not on the
dimension n (see [CW11] and below).

For dimensions n > 3, the estimate (1.2) is near sharp on natural semiclassical
time scales (see Corollary 3.3), in the sense that no better polynomial derivative
estimate can hold. In dimension n = 2, the same is true by comparing to the
scale-invariant case.

Finally, since u0 is localized to a single spherical harmonic, the estimate in the
theorem can be rephrased, since

‖ 〈Dθ〉(n−2)/pn+β
u0‖L2(M) ∼ ‖ 〈k〉(n−2)/pn+β

u0‖L2(M).

Acknowledgements. The author would like to thank Nicolas Burq, Kiril Datchev,
Colin Guillarmou, Jeremy Marzuola, Jason Metcalfe, Fabrice Planchon, and Michael
Taylor for helpful and stimulating conversations during the preparation of this man-
uscript.

2. Reduction in dimension

In this section we use a series of known techniques and estimates to reduce study
of the Schrödiner equation on M to the study of a semiclassical Schrödiner equation
on R with potential. The potential has a degenerate critical point, and we use a
technical blow-up calculus to construct a sequence of parametrices near the critical
point.
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Figure 1. A piece of the manifold X and the trapped sphere at
x = 0.

We observe that we can conjugate ∆ by an isometry of metric spaces and separate
variables so that spectral analysis of ∆ is equivalent to a one-variable semiclassical
problem with potential. That is, let T : L2(X, dVol) → L2(X, dxdθ) be the isometry
given by

Tu(x, θ) = A(n−1)/2(x)u(x, θ).

Then ∆̃ = T∆T−1 is essentially self-adjoint on L2(X, dxdσ) for our choice of A. A
simple calculation gives

−∆̃f = (−∂2
x −A−2(x)∆Sn−1 + V1(x))f,

where the potential

V1(x) =
n− 1

2
A′′A−1 +

(n− 1)(n− 3)

4
(A′)2A−2.

Of course, conjugating the Laplacian by an L2 isometry does not necessarily
preserve Hs or Lq spaces.

Lemma 2.1. With the notation A(x) = (1 + x2m)1/2m from above, for s > 0,

‖Tu‖Hs(dxdσ) 6 C‖u‖Hs(dVol),

‖ 〈−∆Sn−1〉s Tu‖L2(dxdσ) = ‖ 〈−∆Sn−1〉s u‖L2(dVol),

and for q > 2,

‖u‖Lq(dVol) 6 C‖Tu‖Lq(dxdσ).

Proof. The result for 0 < s 6 1 follows from the L2 and H1 result, which follows
by observing that

∂xA
(n−1)/2u = A(n−1)/2∂xu+

(n− 1)

2
A′A(n−3)/2u.

But since |A′| 6 CA, the L2(dxdσ) norm of ∂xTu is bounded by the H1(dVol)
norm of u.

The result for angular derivatives follows by commuting with A(n−1)/2(x).
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For the Lq result, we compute
∫

|u(x, θ)|qA(n−1)(x)dxdσ =

∫
|A(n−1)(1/q−1/2)Tu(x, θ)|qdxdθ.

The function A(n−1)(1/q−1/2)(x) is bounded for q > 2, so the Lq inequality is true
as well. �

As a consequence of this, to prove Theorem 1, it suffices to prove the following
Proposition, and apply Lemma 2.1 with v = Tu.

Proposition 2.2. Suppose v solves

(2.1)

{
(Dt + ∆̃)v = 0,

v|t=0 = v0,

where v0 = Hkv0 is localized on the spherical harmonic subspace of order k. Then

for any T > 0 and β > 0, there exists CT,β > 0 such that

(2.2) ‖v‖Lp([0,T ])Lq 6 CT,β‖ 〈Dθ〉(n−2)/pn+β
v0‖L2 ,

where
2

p
+
n

q
=
n

2
,

and 2 6 q <∞ if n = 2.

We now separate variables by projecting onto the kth spherical harmonic eigenspace.
That is, let Hk be the kth eigenspace of spherical harmonics, so that v ∈ Hk implies

−∆Sn−1v = λ2
kv,

where

λ2
k = k(k + n− 2).

Let Hk : L2(Sn−1) → Hk be the projector.
Since v0 is assumed to satisfy v0 = Hkv0 for some k and the conjugated Laplacian

preserves spherical harmonic eigenspaces, we have also v = Hkv. Motivated by
spectral theory, we compute:

(−∆̃ − λ2)v = Pkv,

where

(2.3) Pkv = PkHkv = (− ∂2

∂x2
+ k(k + n− 2)A−2(x) + V1(x) − λ2)v.

Setting h = (k(k + n − 2))−1/2 and rescaling, we have the one-dimensional semi-
classical operator

P (z, h)ψ(x) = (−h2 d
2

dx2
+ V (x) − z)ψ(x),

where the potential is

V (x) = A−2(x) + h2V1(x)

and the spectral parameter is z = h2λ2.
For our case where A(x) = (1 + x2m)1/2m, the subpotential h2V1 is seen to

be lower order in both the semiclassical and scattering sense. Furthermore, the
principal potential A−2(x) is even, smooth, decays like x−2 at ±∞ and has a
unique degenerate maximum of the form 1 − x2m at x = 0.
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3. Endpoint Strichartz estimates

Before proceeding to the endpoint Strichartz estimates, let us briefly recall the
local smoothing estimates which will eventually allow us to glue together Strichartz
estimates on semiclassical timescales.

3.1. Local smoothing estimates. In this subsection, we recall the local smooth-
ing estimates from [CW11], as well as the dual versions which we will use in this
paper.

Theorem 2 ( [CW11]). Let V (x) = A−2(x) + h2V1(x) as above. Then for any

T > 0, there exists a constant C = CT > 0 such that
∫ T

0

‖|x|m−1 〈x〉−m−1−3/2
eit(−∂2

x+h−2V )u0‖2
L2dt 6 Ch‖u0‖2

L2,

and ∫ T

0

‖ 〈x〉−3/2
eit(−∂2

x+h−2V )u0‖2
L2dt 6 Ch1/(m+1)‖u0‖2

L2 .

The dual versions of these estimates are given in the following Corollary.

Corollary 3.1. Let V (x) = A−2(x)+h2V1(x) as above. Then for any T > 0, there

exists a constant C = CT > 0 such that
∥∥∥∥∥

∫ T

0

|x|m−1 〈x〉−m−1−3/2
e−it(−∂2

x+h−2V )fdt

∥∥∥∥∥

2

L2

6 Ch‖f‖2
L2

T L2 ,

and ∥∥∥∥∥

∫ T

0

〈x〉−3/2
e−it(−∂2

x+h−2V )fdt

∥∥∥∥∥

2

L2

6 Ch(1−m)/(m+1)‖f‖2
L2.

The purpose of these results is to demonstrate that there is perfect 1/2 derivative
local smoothing away from x = 0, or local smoothing with either a loss in derivative
or with a vanishing multiplier at x = 0.

3.2. The endpoint Strichartz estimates. The endpoint Strichartz estimates are
the L2

TL
2⋆1 estimates, where 2⋆ is the Strichartz dual:

1 +
n

2⋆
=
n

2
,

which implies 2⋆ = 2n/(n− 2) for n > 3, and 2⋆ = ∞ if n = 2.
We want to estimate v in L2⋆

(M), which we do using the following estimate due
to Sogge [Sog86]:

Theorem 3 ( [Sog86]). Let (M, g) be a d-dimensional compact Riemannian man-

ifold without boundary, and let −∆ be the Laplace-Beltrami operator on M . If ϕj

are the eigenfunctions,

−∆ϕj = λ2
jϕj

with 0 = λ1 6 λ2 6 · · · the eigenvalues, then

‖ϕj‖L2(d+1)/(d−1) 6 Cλ
(d−1)/2(d+1)
j ‖ϕj‖L2 .

1Throughout this manuscript, we use the notation L
p

T
Lq = Lp([0, T ])Lq(M) to denote the

local in time, global in space Strichartz norm.
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In particular, for the situation at hand,

‖v‖L2⋆(R)L2⋆ (Sn−1) = ‖Hkv‖L2⋆(R)L2⋆ (Sn−1)

6 Ck(n−2)/2n‖Hkv‖L2⋆ (R)L2(Sn−1).

Now let Λk be an index set for the kth harmonic subspace Hk and write

v(t, x, θ) =
∑

l∈Λk

vlk(t, x)Hlk(θ),

whereHlk are the orthonormal spherical harmonics in Hk. Now if p > 2, 2 6 q 6 2∗

(q <∞ if n = 2), we have

‖v‖Lp
T Lq(M) 6 Ck(n−2)/2n‖v‖Lp

T Lq(R)L2(Sn−1)

6 Ck(n−2)/2n

∥∥∥∥∥∥

(
∑

l∈Λk

|vlk|2
)1/2

∥∥∥∥∥∥
Lp

T Lq(R)

,

by Plancherel’s theorem. We further estimate using Minkowski’s inequality repeat-
edly:

∥∥∥∥∥∥

(
∑

l∈Λk

|vlk|2
)1/2

∥∥∥∥∥∥
Lp

T Lq(R)

=



∫ T

0






∫ (∑

l

|vlk|2
)q/2

dx




2/q



p/2

dt




1/p

6 C



∫ T

0

[
∑

l

(∫
|vlk|qdx

)2/q
]p/2

dt




1/p

= C




∫ T

0




(
∑

l

‖vlk‖2
Lq

)1/2



p

dt




1/p

= C







∫ T

0

(
∑

l

‖vlk‖2
Lq

)p/2

dt




2/p



1/2

6 C




∑

l

(∫ T

0

‖vlk‖p
Lqdt

)2/p



1/2

= C

(
∑

l∈Λk

‖vlk‖2
Lp

T Lq

)1/2

.

All told then we have

(3.1) ‖v‖Lp
T Lq(M) 6 Ck(n−2)/2n

(
∑

l∈Λk

‖vlk‖2
Lp

T Lq

)1/2

,

where vlk(t, x) = 〈v(t, x, ·), Hlk〉L2(Sn−1) .

Using (2.3), we see that vlk satisfies the equation (Dt + Pk)vlk = 0, which is
a 1-dimensional Schrödinger equation with potential. We want to estimate vlk in
the L2

TL
2⋆

(R) norm when n > 3, and in Lp
TL

q Strichartz duals with 2 6 q < ∞
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in dimension n = 2. However, since we are now looking at a solution to a one
dimensional Schrödinger equation, 2 and 2⋆ are not Strichartz duals in 1 dimension.
The Strichartz dual p to 2⋆ = 2n/(n− 2) (n > 3) in one dimension satisfies

2

p
+

1

2⋆
=

1

2
,

or

p = 2n.

We therefore first use Hölder’s inequality in t, with weights n and n/(n−1) respec-
tively to get

‖vlk‖2
L2

T L2⋆ =

∫ T

0

‖vlk‖2
L2⋆dt

6 T (n−1)/n‖vlk‖2
L2n

T L2⋆ .

In dimension n = 2, we use p > 2, 2 6 q < ∞ and the same weights in Hölder’s
inequality to get

‖vlk‖2
Lp

T Lq =

∫ T

0

‖vlk‖2
L2⋆dt

6 T 1/p‖vlk‖2
L2n

T L2⋆ .

We have the following proposition.

Proposition 3.2. Suppose vlk solves
{

(Dt + Pk)vlk = 0,

vlk|t=0 = v0
lk,

where v0
lk ∈ Hs for some s > 0. Then for any T > 0, there exists a constant

C = CT > 0 such that

‖vlk‖L2n
T L2⋆ 6 C‖ 〈k〉β v0

lk‖L2 .

That is, even though vlk solves a Schrödiner equation with a degenerate potential
barrier, vlk nevertheless satisfies Strichartz estimates with an arbitrary β > 0 loss.
As a consequence, we have the following estimate on natural semiclassical time
scales.

Corollary 3.3. Suppose v solves (2.1) with initial data v0 = v0
lkHlk. Then for

ǫ > 0 sufficiently small and T = ǫk−2/(m+1), v satisfies the Strichartz estimate

‖v‖L2
T L2⋆ 6 C‖ 〈k〉η+β

v0‖L2 ,

where

η =
1

2n(m+ 1)
(m(n− 2) − n) .

Moreover, if vlk is a zonal spherical harmonic, this estimate is near-sharp, in the

sense that no polynomial derivative improvement is true for every β > 0.

Remark 3.4. This corollary shows that on natural semiclassical time scales the
Strichartz estimates are improved. Indeed, in dimension n = 2, there is a smoothing
effect. The proof of the near-sharpness of this estimate is in Section 5.1.
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3.3. Proof of Proposition 2.2 and Corollary 3.3. Assuming Proposition 3.2,
we have from (3.1) (in dimension n > 3):

‖v‖2
L2

T L2⋆ (M) 6 Ck(n−2)/n
∑

l∈Λk

‖vlk‖2
L2

T L2⋆(R)

6 Ck(n−2)/nT (n−1)/n
∑

l∈Λk

∥∥∥〈k〉β v0
lk

∥∥∥
2

L2(R)

6 CT (n−1)/n‖ 〈k〉(n−2)/2n+β
v0‖2

L2(M),

by orthonormality, which is Proposition 2.2, and hence also Theorem 1. A similar
computation using (3.1) holds when n = 2, and 2 6 q <∞.

For Corollary 3.3, the sum is over only one term, and T ∼ k−2/(m+1). Then in
this case,

‖v‖2
L2

T L2⋆ (M) 6 Ck−2(n−1)/n(m+1)k(n−2)/n‖vlk‖2
L2⋆(R)

6 (1 + |k|) 1
n(m+1)

(m(n−2)−n)‖ 〈k〉β v0
lk‖2

L2(M)

6 C‖ 〈k〉η+β
v0‖2

L2(M),

where η is as in Corollary 3.3. A similar computation holds for q < ∞ in the case
n = 2.

�

4. The parametrix

It remains to prove Proposition 3.2. For that purpose, in this section we construct
a parametrix for the separated Schrödinger equation:

{
(Dt + (−∂2

x + λ2
kA

−2(x) + V1(x)))u = 0,

u|t=0 = u0.

We rescale h2 = λ−2
k to get
{

(Dt − (−∂2
x + h−2A−2(x) + V1(x)))u = 0,

u|t=0 = u0.

Let v(t, x) = u(ht, x), so that
{

(hDt − (−h2∂2
x +A−2(x) + h2V1(x)))v = 0,

v|t=0 = u0.

For the rest of this section, we consider the one-dimensional semiclassical Schrödinger
equation with barrier potential:

(4.1)

{
(hDt + (−h2∂2

x + V (x)))v = 0,

v|t=0 = v0.

The potential V (x) = A−2(x) + h2V1(x) decays at |x| = ∞, is even, and the
principal part A−2(x) has a degenerate maximum at x = 0 with no other critical
points. Denote P = −h2∂2

x + V (x).
Let us give a brief summary of the steps involved in the construction. We

will use a WKB type approximation, although, since we are in dimension 1, we
do not need a particularly good approximation. The first step is to approximate
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the solution away from the critical point at (x, ξ) = (0, 0). Since this is a non-
trapping region, standard techniques can be used to construct a parametrix and
prove Strichartz estimates on a timescale t ∼ h−1 for the semiclassical problem, or
on a fixed timescale for the classical problem. A similar construction applies for
energies away from the trapped set.

The remaining regions can be divided into an h-dependent strongly trapped re-
gion and a “transition region”, where wave packets propagate, but not at a uniform
rate. By restricting attention to a sufficiently small h-dependent neighbourhood of
(0, 0), we can extend a semiclassical parametrix to a timescale t ∼ h(1−m)/(1+m),
which is a classical timescale of h2/(m+1). We divide the transition region into a log-
arithmic number of h-dependent regions on which a similar parametrix construction
works. Summing over all of these regions gives a parametrix construction and corre-
sponding Strichartz estimates in a compact region in phase space with a logarithmic
loss due to the number of summands in the transition region. These constructions
and Strichartz estimates hold for a frequency dependent timescale ∼ h2/(m+1)+β,
β > 0, or with a β > 0 loss in derivative on timescale ∼ h2/(m+1). We then use
the local smoothing estimate from [CW11] to glue estimates on ∼ h−2/(m+1) time
intervals to get the Strichartz estimates with a β > 0 loss overall.

4.1. WKB expansion. We make the following WKB ansatz:

v = h−1/2

∫
eiϕ(t,x,ξ)/he−iyξB(t, x, ξ)u0(y)dydξ,

and compute

(hDx)2v =

∫
eiϕ(t,x,ξ)/h((ϕx)2B − ihϕxxB − 2ihϕxBx − h2Bxx)u0(y)dxdξ,

and

hDtv =

∫
eiϕ(t,x,ξ)/h(ϕtB − ihBt)u0(y)dydξ.

In order to approximately solve the semiclassical Schrödinger equation for v, we
use the WKB analysis. We begin by trying to construct ϕ so that

{
ϕt + (ϕx)2 + V (x) = 0,

ϕ|t=0 = xξ.

Given such ϕ, we solve the transport equations for the amplitude using a semiclas-
sical expansion:

B =
∑

j>0

hjBj(t, x, ξ),

and

−ihBt − ihϕxxB − 2ihϕxBx − h2Bxx = 0.

This amounts to solving:

(4.2)

{
−B0,t − 2ϕxB0,x − ϕxxB0 = 0,

−iBj,t − iϕxxBj − 2iϕxBj,x −Bj−1,xx = 0, j > 1.
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4.2. The partition of unity. In this subsection we construct the partition of unity
which will be used to glue together the parametrices constructed in the following
subsections. Let ǫ > 0, δ > 0 be sufficiently small, and ω > 1, all to be specified
in the sequel. Let χ ∈ C∞

c (R), χ(r) ≡ 1 for |r| 6 1, with support in {|r| 6 2} and
assume χ′(r) 6 0 for r > 0. For σ > 0, let χσ(r) = χ(r/σ). Let χ± ∈ C∞(R),
χ±(r) ≡ 1 for ±r ≫ 1, χ± = 0 for ±r > 0, and choose χ± so that 1 = χ(r) +
χ+(r) + χ−(r), and denote also χ±

σ (r) = χ±(r/σ). Choose also ψ0, ψ ∈ C∞
c (R+)

with ψ0(r) ≡ 1 near r = 0, and ψ(r) ≡ 1 in a neighbourhood of r = δ such that

N(h)∑

0

ψ(ωjx) ≡ 1 for x ∈ [δ, 2ǫh−1/(m+1)],

and

ψ0(x) +

N(h)∑

0

(
ψ(ωjx) + ψ(−ωjx)

)
≡ 1 for x ∈ [−2ǫh−1/(m+1), 2ǫh−1/(m+1)].

We remark for later use that we take, for example

ψ(ωjx) =

{
1, for δ(ωj + ωj−2) 6 x 6 δ(ωj+1 − ωj−1)

0, for x ∈ [δ(ωj − ωj−2), δ(ωj+1 + ωj−1)]∁,

so that in particular
|∂k

xψ(ωjx)| 6 Ck(δω)k(ω−jk).

We also observe this implies we need N(h) sufficiently large that ωj ∼ h−1/(m+1),
so that N(h) = O(log(1/h)), with constants depending on δ, ω, and m.

We write

eitP/h = L(t) + S(t) := (1 − χǫ(x))e
itP/h + χǫ(x)e

itP/h

for the propagator cut off to large and small values of x respectively. The set
where the symbol p = 1 contains the critical point (0, 0), so we further decompose
into frequencies ξ which lie above (respectively below) the set where p = 1, and
frequencies which are bounded:

S(t) = Shi(t) + Slo(t),

where
Shi(t) = 1{±hDx>1−V (x)}(1 − χǫ2((P − 1)))S(t),

and Slo(t) = S(t) − Shi(t). We decompose yet again to

Slo(t) = Slo,0,0(t) +

N(h)∑

j=0

(Slo,j,+(t) + Slo,j,−(t)),

where
Slo,0,0(t) = ψ0(x/h

1/(m+1))Slo(t),

and
Slo,j,±(t) = ψ(±ωjx/h1/(m+1))Slo(t).

The operators Slo,j,±(t) are localized to bounded frequencies, and dyadic strips

of size h1/(m+1)ωj. We require one further localization, which is to assume that
the operators are also outgoing/incoming. Choose χ̃ ∈ C∞(R) so that χ̃(r) = 1 for
r > 1 and χ̃(r) = 0 for r 6 0. For a, γ > 0 to be determined, let

S±
lo,j,+(t) = χ̃((±hDx + axm)/γxm)Slo,j,+(t),
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and
S±

lo,j,−(t) = χ̃((∓hDx + axm)/γxm)Slo,j,−(t).

This has the effect of localizing in phase space to the sets where

±ξ > −axm

for S±
lo,j,+(t) and similarly for S±

lo,j,−(t). By the properties of χ̃, we have

S±
lo,j,+(t) = Slo,j,+(t)

microlocally on the set
{±ξ > (γ − a)xm}.

If a > γ, these two sets clearly cover the remaining phase space, so if we can
estimate each one of the operators above, we have estimated the entire propagator.

It is clear then that if we can prove, say, β/2 > 0 loss Strichartz estimates for
Slo,0,0(t), and for each S+

lo,j,+ and S−
lo,j,−(t) for t > 0, the Strichartz estimates

follow for S−
lo,j,+ and S+

lo,j,−(t) by time reversal. We thus have to prove Strichartz

estimates for each of these operators, as well as for Shi(t) and L(t), at which point
we can sum up and take a loss of log(1/h) + h−β/2 < Ch−β .

4.3. The parametrix for L(t). We recall that the operator L(t) is the propagator
localized to large |x|. Then the operator L(t) can be decomposed into L+(t)+L−(t),
supported where ±x > 0 respectively. Thus

L+(t) = χ+
ǫ (x)eitP/h.

By a TT ∗ argument (see [KT98]), in order to show L+ : L2 → Lp
TL

q, it suffices to
estimate

L+(t)(L+)∗(s) : L1 → L∞,

but
L+(t)(L+)∗(s) = χ+

ǫ (x)ei(t−s)P/hχ+
ǫ (x).

That is, we need only construct a parametrix supported for x > ǫ, and for initial
data supported for x > ǫ.

Lemma 4.1. There exist constants C > 0 and α > 0 such that for any u0 ∈ L1∩L2,

we have

‖L+(t)(L+)∗(s)u0‖L∞
x

6 C(|t− s|h)−1/2‖u0‖L1 ,

for |t|, |s| 6 αh−1. As a consequence,

‖L(t)u0‖Lp

αh−1Lq 6 h−1/p‖u0‖L2

for
2

p
+

1

q
=

1

2
, 2 6 q <∞.

Proof. The proof is simply to observe that L+(t)(L+)∗(s) is equal to a non-trapping
cut-off propagator, and hence obeys a strong dispersion and perfect Strichartz es-
timates according to [BT08].

To see this, let

Ã(x)−2 = χ(x/ǫ)x−2 + (1 − χ(x/ǫ))A−2.

The function Ã agrees with A for large x and agrees with x for small x. Then

g̃ = dx2 + Ã2(x)dθ2, x > 0
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is an asymptotically Euclidean metric, which agrees with the Euclidean metric near
x = 0. In fact, since g was a short-range perturbation of the Euclidean metric as
x → +∞, so is g̃. In addition, we claim that for ǫ > 0 sufficiently small, g̃ is a
non-trapping perturbation of the Euclidean metric. To see this, we examine the
geodesic equations. Let p̃ = ξ2 + Ã−2(x)η2, and compute the geodesic equations:





ẋ = 2ξ,

ξ̇ = 2Ã′Ã−3η2,

θ̇ = 2Ãη,

η̇ = 0.

Consider a unit speed geodesic with p̃ ≡ 1. Since η remains constant, then either
η = 0, in which case ξ = ±1 and x → ±∞ uniformly, or η 6= 0. If ξ ≡ 0, then
necessarily (Ã−2(x))′ = 0 and x is stationary, but

(Ã−2(x))′ = −2χ(x/ǫ)x−3 − 2(1 − χ(x/ǫ))A′A−3 + ǫ−1χ′(xǫ)(x−2 −A−2).

But A′ > 0 away from x = 0, x−2 ≫ A−2 for x > 0 sufficiently small, and χ′ 6 0
for x > 0 implies (Ã−2(x))′ < 0 for x > 0. Hence there are no parallel periodic
geodesics.

It remains to show that every other trajectory escapes to infinity. But since
ξ̇ > c−1x−3η2, comparing to the non-trapping conic metric with

{
ẋ = 2ξ,

ξ̇ = c−1x−3η2

implies that every other trajectory is non-trapped. Then following Bouclet-Tzvetkov
[BT08], we get that

L+ : L2 → Lp
αh−1L

q, α > 0,

is a bounded operator for (p, q) in the specified range. A similar estimate holds for
L−, and hence L, and hence for any ǫ > 0 sufficiently small, we can construct a
parametrix to get perfect Strichartz estimates for |x| > ǫ.

�

4.4. The parametrix for Shi(t). The operator Shi(t) is the propagator localized
to small |x| 6 2ǫ and high frequencies |P − 1| > ǫ2, and ±ξ > 1 − V (x). In order
to estimate Shi(t), we employ a similar argument. We first decompose Shi(t) =
S+

hi(t) + S−
hi(t) into a part supported in ±ξ > 0. The point of the next lemma

is that singularities propagate out of this region quickly, depending on the initial
frequency.

Lemma 4.2. There exist constants α, κ > 0 such that

χ+(|t− s|hDx/κǫ)S
+
hi

(t)(S+
hi

)∗(s) = O(h∞)

in any seminorm, provided |t|, |s| 6 αh−1

There exist constants C > 0 and α > 0 such that for any u0 ∈ L1 ∩ L2, we have

‖S+
hi

(t)(S+
hi

)∗(s)u0‖L∞
x

6 C(|t− s|h)−1/2‖u0‖L1 ,

for |t|, |s| 6 αh−1. As a consequence,

‖Shi(t)u0‖Lp

αh−1Lq 6 Ch−1/p‖u0‖L2
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for
2

p
+

1

q
=

1

2
, 2 6 q <∞.

Proof. As usual, we consider the Hamiltonian system associated to p:




ẋ = 2ξ,

ξ̇ = −V ′(x),

x(0) = y,

ξ(0) = η,

where now |x|, |y| 6 2ǫ and η > ǫ. Then a simple computation shows that in this
region |V ′(x)| = O(ǫ2m−1) and |V ′′(x)| = O(ǫ2m−2). Hence if t = O(1), we have

ξ = η + O(ǫ2m−1) = η(1 + O(ǫ2m−2)),

since η > ǫ. Hence
ẋ = 2η(1 + O(ǫ2m−2)),

so that
x = y + 2tη(1 + O(ǫ2m−2)),

provided t = O(1). This implies in particular, that for any |t| > Cǫ/η, we will have
|x| > 2ǫ, so that we have propagated out of the region of interest. Again, by virtue
of a TT ∗ argument, we are interested in both initial data and parametrix localized
in |x| 6 2ǫ, ξ > ǫ, so we need only check the estimates on the phase function for
|t| 6 Cǫ/η.

We check the invertibility of the map y 7→ x(t):

sup
|t|6Cǫ/η

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ 6 1 + 2

∫ Cǫ/η

0

(Cǫ/η − s)|V ′′(x)|
∣∣∣∣
∂x

∂y
(s)

∣∣∣∣ ds

6 1 + O(ǫ2/η2)O(ǫ2m−2) sup
|s|6Cǫ/η

∣∣∣∣
∂x

∂y
(s)

∣∣∣∣ ,

which implies

sup
|t|6Cǫ/η

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ 6 1 + O(ǫ2m−2).

Similarly we compute the lower bound:

inf
|t|6Cǫ/η

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ > 1 − 2

∫ Cǫ/η

0

(Cǫ/η − s)|V ′′(x)|
∣∣∣∣
∂x

∂y
(s)

∣∣∣∣ ds

> 1 −O(ǫ2/η2)O(ǫ2m−2) sup
|s|6Cǫ/η

∣∣∣∣
∂x

∂y
(s)

∣∣∣∣

> 1 −O(ǫ2m−2),

using our previously computed upper bound. Hence in the range in which we are
interested, ∂x/∂y is uniformly bounded above and below by a constant, provided
ǫ > 0 is chosen sufficiently small.

It is now a routine computation to construct the WKB amplitude and compute
the dispersive estimate for |t| 6 Cǫ/η. After that time, the h-wavefront set of
a solution is outside the support of the cutoffs in Shi(t), so that any parametrix
approximation is O(h∞). Summing over O(h−1) such parametrices yields the dis-
persive estimate for |t| 6 αh−1, and the associated Strichartz estimates.
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A similar computation works for Shi(t) localized to ξ 6 −ǫ, which proves the
lemma for Shi(t).

�

4.5. The parametrix for Slo,0,0(t). The operator Slo,0,0(t) is the propagator lo-
calized to small frequencies |P − 1| 6 ǫ2 or |P − 1| > ǫ2 with |ξ| 6 1−V (x), as well
as localized to a small h-dependent spatial neighbourhood |x| 6 δh1/(m+1). This
is the region which contains the trapping. We observe that all of the Slo operators
have |x| 6 ǫ, which implies in addition that |ξ| 6 2ǫ, say.

We are now interested in constructing a parametrix in the set {|x| 6 δh1/(m+1), |ξ| 6

ǫ}. For this, we use the following h-dependent scaling operator:

Thu(t, x) = h−1/(m+1)u(h(m−1)/(m+1)t, h−1/(m+1)x).

The purpose of the prefactor of h−1/(m+1), different from the usual scaling prefactor,
is to ensure that ‖Thu‖L1

x
= ‖u‖L1

x
, since in our final dispersion estimate, this is

how the initial data will be measured. We compute:

T−1
h (hDt − h2∂2

x + V (x))Th = (h(m−1)/(m+1)hDt − h−2/(m+1)h2∂2
x + V (h1/(m+1)x))

= h2m/(m+1)(Dt − ∂2
x + Ṽ (x;h)),

where

Ṽ (x;h) = h−2m/(m+1)V (h1/(m+1)x).

Remark 4.3. Similar to the the techniques in the paper [CW11], conjugation by
the scaling operator Th is an inhomogeneous “blowup” procedure. However, the
blowdown map B is now time-dependent and takes the form

B(t, τ, x, ξ) = (h(1−m)/(m+1)t, h2m/(m+1)τ, h1/(m+1)x, hm/(m+1)ξ).

That is, we are blowing up the (τ, x, ξ) coordinates and blowing down the t coordi-
nate at the same time. Observe that the blowdown in t does not cause a problem
with the calculus since the operator P is independent of t. Then indeed, according
to the calculus developed in [CW11], σh(P ) = τ +ξ2 +V (x) in the h calculus, while
T−1

h PTh has symbol

p̃1 = (h2m/(m+1)τ) + (hm/(m+1)ξ)2 + V (h1/(m+1)x)

in the 1-calculus, or scale-invariant calculus. Factoring out the h2m/(m+1) as above
results in a singular symbol in the scale-invariant calculus (see Figure 2). However,
the special structure of V allows us to construct a reasonable parametrix where
V ′ is extremely small, and where V ′ is large, wave packets propagate away in a
controlled fashion. This is made rigorous in the following constructions.

Denote P̃ = Dt − ∂2
x + Ṽ (x;h), where

Ṽ (x;h) = h−2m/(m+1)V (h1/(m+1)x).

We break the parametrix construction into two sets, where Ṽ ′ is small (and hence

this region contains the trapping), and where Ṽ ′ is large, which we reserve for the
next subsections where we estimate S±

lo,j,±(t).

We want to now construct a parametrix for P̃ on the set

{|x| 6 δ, |ξ| 6 2h−m/(m+1), |t| 6 1},
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h1/(m+1)
x

ξ

δ h−1/(m+1)

h−m/(m+1)

Figure 2. The phase plane in the blown up coordinates. The

invariant curves are given by Lζ = {ξ =

√
ζ2 − Ṽ (x), with ζ2 >

h−2m/(m+1). The boxes represent the h-wavefront set of a wave
packet after rescaling (x, ξ) 7→ (h−1/(m+1)x, h−m/(m+1)ξ), but in
the 1-calculus.

but in the 1-calculus (scale-invariant). Then if w(t, x) is such a parametrix, v(t, x) =
Thw(t, x) is a parametrix for P on the set {|x| 6 δh1/(m+1), |ξ| 6 ǫ, |t| 6 h(1−m)/(1+m)},
as required.

Lemma 4.4. There exists α > 0 and a phase function ϕ(t, x, η) satisfying
{
ϕt + ϕ2

x + Ṽ (x;h) = 0,

ϕ(0, x, η) = xη

for |x| 6 δ, |η| 6 2ǫh−m/(m+1), and |t| 6 α.

We further have

ϕηη ∼ 2t(1 + O(t)),

and

ϕxx = O(tx2m−2)

for |t| 6 α.

Proof. The proof is by the usual Hamiltonian method. We consider q = ξ2+Ṽ (x;h)
and the Hamiltonian system associated to q:

(4.3)





ẋ = 2ξ,

ξ̇ = −∂xṼ (x;h),

x(0) = y,

ξ(0) = η.
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Now the potential Ṽ (x;h) has been computed above, and satisfies

−∂xṼ (x;h) = −∂x

(
h−2m/(m+1)(1 + (h1/(m+1)x)2m)−1/m + h2/(m+1)V1(h

1/(m+1)x)
)

= 2h−2m/(m+1)h1/(m+1)(h1/(m+1)x)2m−1(1 + (h1/(m+1)x)2m)−1/m−1

+ O(h3/(m+1)((h1/(m+1)x)2m−3).

For |x| 6 δ this derivative is bounded, and has the same sign as x. Let us denote

B(x) = −∂xṼ (x;h) to avoid cumbersome notation.
In order to apply the usual Hamilton-Jacobi theory, we need to show that ∂x/∂y

is uniformly bounded above and below by positive constants on some interval |t| 6

α, so that we can invert the transformation y 7→ x(t) to get y = y(t, x). Then using
(x, η) as coordinates instead of (y, η) proves the first part of the Lemma. We write

x(t) = y + 2tη +

∫ t

0

(t− s)B(x(s))ds,

and compute

∂x

∂y
(t) = 1 +

∫ t

0

(t− s)B′(x(s))
∂x

∂y
(s)ds.

We know
∂x

∂y
(0) = 1,

and B′(x) is non-negative in a neighbourhood of x = 0, so the integral in the above
expression is positive for |x| 6 δ and |t| 6 α sufficiently small. Further, B′ is
bounded for |x| 6 δ, so the integral expression is also bounded above for |t| 6 α.
Hence by restricting |x| and |t| to fixed, bounded ranges, we conclude the map
sending y 7→ x(t) is invertible, and this completes the proof of the first assertion.

We observe that, by construction, ϕη(t, x, η) = y, so that to compute ϕηη, we
need to compute

∂y

∂η
=
∂y

∂x

∂x

∂η
.

We have already shown that ∂y/∂x is bounded above and below for |t| 6 α, so we
compute

∂x

∂η
= 2t+

∫ t

0

(t− s)B′(x(s))
∂x

∂η
(s)ds

= 2t+ O(t2) sup
∂x

∂η
.

This implies

sup
|t|6α

∂x

∂η
(t) 6 2t(1 + O(t)).

Plugging this into the integral expression above yields

inf
|t|6α

∂x

∂η
> 2t(1 + O(t3)).

Finally, since the intertwining relation gives ϕx(t, x, η) = ξ, we have

ϕxx = ∂yξ∂xy
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in the notation above. We have already shown that ∂xy is bounded above and
below by a positive constant for |t| 6 α, so we just need to compute

∂yξ = ∂y

(
η −

∫ t

0

Ṽ ′(x(s))ds

)

= −
∫ t

0

Ṽ ′′(x(s))∂yx(s)ds

= O(tx2m−2).

This is the last assertion in the Lemma.
�

We now construct the amplitude for the parametrix for the operator Slo,0,0(t).
This, combined with Lemma 4.4, will be used to compute a dispersion estimate,
resulting in a Strichartz estimate. The problem is that, since we are working in
a marginal calculus, the error terms in our parametrix are just too large. For
example, the error term ϕxx ∼ tx2m−2 computed in Lemma 4.4 rescales as

Thϕxx ∼ h(m−1)/(m+1)th−(2m−2)/(m+1)x2m−2 ∼ h(1−m)/(1+m)tx2m−2.

This operator, when composed with the appropriate oscillatory integral, yields an
L2 bounded operator for each t, |t| 6 h(1−m)/(m+1). However, to apply an energy
estimate or a local smoothing estimate, we either have to integrate in time (now an
interval of length ∼ h(1−m)/(1+m)), or pull out a factor of xm−1 to apply Theorem
2. In either case, we lose a factor of h(1−m)/2(m+1). Hence at this point we must
accept an β > 0 loss in regularity by restricting our attention to a slightly smaller
time interval. Then the “lower order” terms in the amplitude construction will
actually gain powers of h.

We are interested in constructing a parametrix for the operator Slo,0,0(t)S
∗
lo,0,0(s).

We have constructed a phase function ϕ(t, x, ξ) in rescaled coordinates, assuming
appropriate microlocal cutoffs. That is, we have constructed the appropriate phase
functions to approximate the operators

T−1
h Slo,0,0(t)S

∗
lo,0,0(s) = T−1

h Slo,0,0(t− s)χ⋆,

where χ⋆ is the appropriate microlocal cutoff. We have not yet computed the
amplitude. Recalling the transport equations in the h-calculus (4.2), the transport
equations for the amplitude B in the rescaled 1-calculus coordinates become

DtB + 2ϕxDxB − iϕxxB − ∂2
xB = 0.

The standard technique here is to guess an asymptotic series, however, there is
no small parameter, so we instead modify our ansatz to take advantage of the
Frobenius theorem.

That is, the Frobenius theorem guarantees the existence of a function Γ(t, x),
depending implicitly on the frequency ξ, satisfying

{
∂tΓ + 2ϕx∂xΓ = 0,

Γ(0, x) = x.
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We then construct B =
∑K

j=0Bj for sufficiently large K to be determined (inde-

pendent of h) with
{
B0 ≡ 1,

Bj = −
∫ t

0 ϕxxBj−1|(s,Γ(t−s,x)) + iBj−1,xx|(s,Γ(t−s,x)).

An induction argument shows that Bj = O(tj) for each j, since we are in the scale
invariant calculus.

Then

w(t, x) = (2π)−1

∫
eiϕ(t,x,ξ)−iyξB(t, x, ξ)χ⋆(y,Dy)

∗w0(y)dydξ

solves {
P̃w = Ẽ,

w(0, x) = χ⋆(x,Dx)∗w0(x),

where

χ⋆ = T−1
h ψ0(x/h

1/(m+1))(1 − 1{±hDx>1−V (x)}(1 − χǫ2((P − 1))))χǫ(x)Th

is the appropriate microlocal cutoff, and the equation is understood to make sense

for |t| 6 α. Here, the error Ẽ is given by

Ẽ = (2π)−1

∫
eiϕ(t,x,ξ)−iyξ(−∂2

xBK − iϕxxBK)χ∗(y,Dy)w0(y)dydξ.

That is, Ẽ is an oscillatory integral operator with the same phase function as w,
and amplitude A(t, x, ξ) satisfying

|∂k
x∂

l
ξA| 6 Cklt

K ,

and hence, according to the next Lemma, satisfies

‖Ẽ‖L2
x

= O(tK)‖χ∗w0‖L2.

Lemma 4.5. Suppose Γ(t, x, ξ) ∈ C∞
b S0,0 is a smooth family of symbols with

bounded derivatives, and let F (t), 0 6 t 6 α be the operator defined by

F (t)g(x) =

∫
eiϕ(t,x,ξ)−iyξΓ(t, x, ξ)χ⋆(y,Dy)g(y)dydξ,

where ϕ is the phase function constructed above and χ⋆ is the appropriate microlocal

cutoff. Then

sup
06t6α

‖F (t)g‖L2 6 C‖g‖L2.

Proof. Let us work microlocally to avoid continually using microlocal cutoffs, and
therefore assume the appropriate microlocal concentration. The L2 boundedness
of F (t) is equivalent to the L2 boundedness of F (t)∗, which follows from the L2

boundedness of F (t)F (t)∗. The operator F (t)F (t)∗ is easily seen to have integral
kernel

K =

∫
eiϕ(t,x,ξ)−iϕ(t,x′,ξ)Γ(t, x, ξ)Γ̄(t, x′, ξ)dξ,

where again we are implicitly assuming appropriate microlocal cutoffs.
By stationary phase, this integral kernel has singularities when

∂ξ(ϕ(t, x, ξ) − ϕ(t, x′, ξ)) = 0,
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which is when (using the notations from the phase construction)

y(t, x, ξ) − y(t, x′, ξ) = 0.

Let us assume that x > x′, so that we want to compute where

(x− x′)
(
∂xy|x + O(∂2

xy(x− x′))
)
.

Now due to the microlocal cutoffs χ⋆, we have that x and x′ are both small. By
the inverse function theorem and the boundedness of ∂xy, we need to estimate ∂2

yx
in the Hamiltonian systems used to construct the phase functions. We compute

∂2
yx = −

∫ t

0

(Ṽ ′′′(x)(∂yx)
2 + Ṽ ′′(x)∂2

yx)ds,

and estimating the first term by c for a small constant c and solving for sup ∂2
yx

shows that

|O(∂2
xy(x− x′))| 6 c′,

where c′ > 0 is a small constant depending on our previous choices of ǫ, δ, and ω.
Iterating this argument for other powers of (x− x′) shows that the singularities

of the integral kernel lie on the diagonal |x−x′| = 0, so the integral kernel defines a
0 order pseudodifferential operator with symbol in the class S0,0. By the Calderón-
Vaillancourt theorem, the L2 boundedness is established.

�

If we now take v = Thw, we see

Pv = ThT
−1
h PThw

= h2m/(m+1)ThP̃w

= E,

with initial conditions

v(0, x) = Thw(0, x),

and where

E = h2m/(m+1)ThẼ.

A simple computation shows that ‖Thf‖L2 = h−1/2(m+1)‖f‖L2, so that if we now
restrict attention to the smaller (rescaled) time interval

0 6 t 6 αh(1−m)/(m+1)+β

for some small fixed β > 0, we have

sup
06t6αh(1−m)/(m+1)+β

‖E‖L2 = h(4m−1)/2(m+1) sup
06t6αhβ

‖Ẽ‖L2

6 Ch(4m−1)/2(m+1)hβK‖χ∗
⋆w0‖L2

6 Ch2m/(m+1)hβK‖χ∗
⋆v0‖L2.

Here, in the above computations, we have suppressed the variables of the microlocal
cutoffs χ⋆, which are understood to be evaluated in the phase space variables of
the appropriate scale.

The following lemma contains the dispersion and Strichartz estimates for the
operators Slo,0,0(t).
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Lemma 4.6. The parametrix v(t, x) satisfies the dispersion estimate

‖χ⋆v‖L∞ 6 C(ht)−1/2‖χ̃v0‖L1,

where 0 < t 6 αh(1−m)/(1+m), as well as the corresponding Strichartz estimate

‖v‖Lp

αh(1−m)/(1+m)
Lq 6 Ch−1/p‖χv0‖L2,

for
2

p
+

1

q
=

1

2
, q <∞,

and constants independent of h.
The cutoff propagator Slo,0,0 satisfies

‖Slo,0,0‖L2→Lp

αh(1−m)/(1+m)+β
Lq 6 Ch−1/p,

and

‖Slo,0,0‖L2→Lp

αh(1−m)/(1+m)
Lq 6 Ch−(1+β)/p,

for (p, q) in the same range and constants independent of h.

Remark 4.7. Observe that the parametrix satisfies good Strichartz estimates all
the way up to the critical time scale t ∼ h(1−m)/(m+1), but we are only able to
conclude that the propagator obeys perfect Strichartz estimates on a slightly shorter
time scale, or obeys Strichartz estimates with a small loss on the critical time scale.
This is an artifact of working in the marginal calculus and trying to make error
terms small in h.

Proof. We have

v(t, x)

= Thw(t, x)

= Th(2π)−1

∫
eiϕ(t,x,ξ)−iyξB(t, x, ξ)χ∗

⋆(y,Dy, h)w0(y)dydξ

= h−1/(m+1)(2π)−1

∫
eiϕ(h(m−1)/(m+1)t,h−1/(m+1)x,ξ)

· e−iyξB(h(m−1)/(m+1)t, h−1/(m+1)x, ξ)χ∗
⋆(y,Dy, h)w0(y)dydξ

= (2πh)−1

∫
eiϕ⋆(t,x,ξ)−iyξ/hB⋆(t, x, ξ)Thχ

∗
⋆(y,Dy, h)w0(y)dydξ,

where we use the notation

ϕ⋆(t, x, ξ) = ϕ(h(m−1)/(m+1)t, h−1/(m+1)x, h−m/(m+1)ξ),

and similarly for B. We rewrite this expression as

v⋆(t, x) =

∫

y

K⋆(t, x, y;h)χ⋆v⋆,0(y)dy,

where

K⋆(t, x, y;h) = (2πh)−1

∫
eiϕ⋆(t,x,ξ)−iyξ/hB⋆,0(t, x, ξ)χ̃⋆(y, ξ;h)dξ,

and

χ⋆v⋆,0(y) = Thχ
∗
⋆(y,Dy, h)w0(y).
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We have already computed the derivative properties of the functions ϕ and B in
order to apply the lemma of stationary phase (with h as small parameter). The
unique critical point is at

∂ξ(hϕ⋆(t, x, ξ) − yξ) = 0,

so the leading asymptotic is

(2πh)−1/2|∂2
ξ (hϕ⋆(t, x, ξ) − yξ)|−1/2

= (2πh)−1/2|hh−2m/(m+1)ϕξξ|(h(m−1)/(m+1)t,h−1/(m+1)x,h−m/(m+1)ξ)

∼ h−1/2|hh−2m/(m+1)h(m−1)/(m+1)t|−1/2

= |ht|−1/2,

as claimed. The Strichartz estimates follow immediately.
We now estimate the difference between the propagator and the parametrix in

the L∞
x norm to prove that the actual propagator has the correct dispersion, at

least on a slightly shorter time scale. Let u(t, x) = Slo,0,0(t)v0(x), so that
{

(hDt + P )(v − u) = E,

(v − u)|t=0 = 0.

Since the propagator and the parametrix are compactly essentially supported in
frequency on scale h−1 we have the endpoint Sobolev embeddings:

sup
|t|6αh(1−m)/(m+1)+β

‖v − u‖L∞
x

6 h−1/2 sup
|t|6αh(1−m)/(m+1)+β

‖v − u‖L2
x
.

Let the energy E(t) = ‖v − u‖2
L2 , and compute

E ′ = 2 Re
i

h

∫
E(v − u)dx

6 h−1h(1−m)/(m+1)+β‖E‖2
L2

x
+ h(m−1)/(m+1)+βE ,

and hence by Gronwall’s inequality,

E(t) 6 Ch−2m/(m+1)+β‖E‖2
L2

tL2
x

6 Ch(1−3m)/(m+1)+2β‖E‖2
L∞

h(1−m)/(m+1)+β
L2

x

6 Ch1+2(K+1)β‖χ∗
⋆w0‖2

L2

6 Ch2(K+1)β‖χ∗
⋆w0‖2

L1
x
.

We finally conclude

sup
|t|6αh(1−m)/(m+1)+β

‖v − u‖L∞
x

6 Ch−1/2+(K+1)β‖χ∗
⋆w0‖L1

x

6 C|ht|−1/2‖χ∗
⋆w0‖L1

x
,

provided |t| 6 αh(1−m)/(m+1)+β and K is sufficiently large that

−1

2
+ (K + 1)β > − 1

m+ 1
− β

2
.

The Strichartz estimates for Slo,0,0(t) follow immediately.
�
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4.6. The parametrix for S+
lo,j,+(t). The operators S+

lo,j,+(t) are the propagator
localized to outgoing frequencies −axm 6 ξ 6 2ǫ in the spatial interaction region
{δh1/(m+1)/2 6 ±x 6 2ǫ}. We have divided the spatial interaction region into
h-dependent geometric regions; S+

lo,j,+(t) is localized to

x ∈ h1/(m+1)Ij := [h1/(m+1)δ(ωj − ωj−2), h1/(m+1)δ(ωj+1 + ωj−1)].

The symbol χ̃((ξ + axm)/γxm) is invariant under the rescaling operation, so after
applying the rescaling operators, we are interested in constructing a parametrix in
the regions

−axm 6 ξ 6 2ǫh−m/(m+1), x ∈ Ij .

When the derivative of the effective potential Ṽ ′ is large, singularities propa-
gate away quickly, however not uniformly so. We introduce a loss by constructing
log(1/h) parametrices, and by eventually restricting our construction to subcritical
time scales.

We now compute how long it takes a wave packet to exit the interval Ij . Write

Ij = [y−j , y
+
j ] := [δ(ωj − ωj−2), δ(ωj+1 + ωj−1)],

and fix an initial point (y, η) with y ∈ Ij , η > −a(y+
j )m. Then recalling the

Hamiltonian system (4.3), we have

x(t) > y − 2ta(y+
j )m >

1

2
y−j

as long as

0 6 t 6
y−j (y+

j )−m

4a
.

We have

y+
j = y−j (ω + O(ω−1)),

so that x(t) > y−j /2 provided

0 6 t 6
(y−j )1−m

4aωm
(1 + O(ω−1)).

In this case,

−∂xṼ > (y−j /2)2m−1,

which in turn implies

ξ > −a(y+
j )m + t(y−j /2)2m−1 > b(y−j )m,

provided

t > 22m−1(aωm(1 + O(ω−1)) + b)(y−j )1−m.

Choosing a, b > 0 sufficiently small means we can assume η > b(y−j )m after a time

comparable to at most (y−j )1−m.
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We now compute how long it takes to leave Ij assuming y ∈ Ij and η > b(y−j )m.
We have

x = y + 2tη +

∫ t

0

(t− s)B(x(s))ds

> y−j + 2tb(y−j )m +

∫ t

0

(t− s)B(y−j )ds

> y−j + 2tb(y−j )m +
1

2
t2(y−j )2m−1

> y+
j

provided

t > (y−j )1−m

(
−2b+

√
4b2 + 2(y+

j /y
−
j − 1)

)
,

which is again comparable to (y−j )1−m.

We now estimate for t = α(y−j )1−m, for α > 0 to be determined:

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ 6 1 +

∫ t

0

(t− s)(4m− 2)(y+
j )2m−2ds

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣

6 1 + (2m− 1)t2(y+
j )2m−2

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣

6 1 + Cω,m,a,bα
2

∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ .

Choosing α > 0 sufficiently small (but independent of h) shows that
∣∣∣∣
∂x

∂y
(t)

∣∣∣∣ 6 C

uniformly for t in this range.
With this estimate in hand, we can compute ∂x/∂η = 2t(1 + O(t)) as usual,

which results in the following Lemma. In practice, we need to gain some powers
of h in our parametrix construction, so we only construct the parametrix up to
time t ∼ hǫ/2(y−j )1−m for a small ǫ > 0, and then iterate Ch−ǫ times. After time

t ∼ h−ǫ/2(y−j )1−m then the wavefront set will be outside the interval Ij . Let us

state the following lemma for the short h-independent time scale 0 6 t 6 α(y−j )1−m;
we will worry about summing over the h-dependent number of time intervals after
constructing the amplitude.

Lemma 4.8. There exists α, a > 0, and ω > 1 independent of h and j such that

for each 0 6 j 6 O(log(1/h)), there is a phase function ϕ(t, x, ξ) satisfying
{
ϕt + ϕ2

x + Ṽ (x;h) = 0,

ϕ(0, x, η) = xη

for x ∈ Ij , −a(y+
j )m 6 ξ 6 2ǫh−m/(m+1), and |t| 6 α(y−j )1−m.

We further have

ϕηη ∼ 2t(1 + O(t)),

for |t| 6 α(y−j )1−m.
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We now construct the amplitude for the parametrix for the operator S+
lo,j,+(t).

This, combined with Lemma 4.8, will be used to compute a dispersion estimate,
resulting in a Strichartz estimate. The problem is that, just as in Subsection 4.5, we
are working in a marginal calculus, so to construct the amplitude as an asymptotic
series, we must restrict the range of t to depend mildly on h.

We again appeal to the Frobenius theorem to get a function Γ(t, x) (again im-
plicitly depending on the frequency ξ) satisfying

{
∂tΓ + 2ϕx∂xΓ = 0,

Γ(0, x) = x.

We then construct B =
∑K

j=0Bj for sufficiently large K to be determined (inde-

pendent of h) with
{
B0 ≡ 1,

Bj = −
∫ t

0
ϕxxBj−1|(s,Γ(t−s,x)) + iBj−1,xx|(s,Γ(t−s,x)).

A tedious induction argument shows that Bj satisfies

|∂l
xBj | = O

(
j∑

k=1

∣∣tk+jx2km−2j−l
∣∣
)
.

Then

w(t, x) = (2π)−1

∫
eiϕ(t,x,ξ)−iyξB(t, x, ξ)χ(y,Dy)∗w0(y)dydξ

solves {
P̃w = Ẽ,

w(0, x) = χ⋆(x,Dx)∗w0(x),

where

χ⋆ = T−1
h ψ(±ωjx/h1/(m+1))(1 − 1{±hDx>1−V (x)}(1 − χǫ2((P − 1))))χǫ(x)Th

is the appropriate microlocal cutoff, and the equation is understood to make sense

for |t| 6 α(y−j )1−m. Here, the error Ẽ is given by

Ẽ = (2π)−1

∫
eiϕ(t,x,ξ)−iyξ(−∂2

xBK − iϕxxBK)χ∗(y,Dy)w0(y)dydξ.

That is, Ẽ is an oscillatory integral operator with the same phase function as w.

Having computed the symbol of the error term Ẽ to be −∂2
xBK − iϕxxBK , in the

rescaled coordinates we have for |t| 6 hβ/2|x|1−m,

−∂2
xBK − iϕxxBK = O

(
K+1∑

l=1

|t|l+K |x|2ml−2K−2

)

= O
(

K+1∑

l=1

h(l+K)β/2|x|(m+1)(l−K)−2

)

= O(h(1+K)β/2|x|m−1)

in the worst case when l = K + 1. Now since |x| 6 h−1/(m+1), this error term is of
order O(h(1+K)β/2+(1−m)/(1+m)), which is small as K gets large.
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If we now take v = Thw, we see

Pv = ThT
−1
h PThw

= h2m/(m+1)ThP̃w

= E,

with initial conditions
v(0, x) = Thw(0, x),

and where
E = h2m/(m+1)ThẼ.

A similar computation to Subsection 4.5 shows

sup
06t6αhβ/2|y−

j |1−m

‖E‖L2 6 Ch2m/(m+1)hβ(1+K)/2+(1−m)/(1+m)‖χ∗
⋆v0‖L2 .

The following lemma contains the dispersion and Strichartz estimates for the
operators S+

lo,j,+(t).

Lemma 4.9. The parametrix v(t, x) satisfies the dispersion estimate

‖χ⋆v‖L∞ 6 C(ht)−1/2‖χ̃v0‖L1,

where 0 < t 6 αhβ/2|y−j |1−m, as well as the corresponding Strichartz estimate

‖v‖Lp

αhβ/2|y
−
j

|1−m
Lq 6 Ch−1/p‖χv0‖L2,

for
2

p
+

1

q
=

1

2
, q <∞,

and constants independent of h.
The cutoff propagator S+

lo,j,+ satisfies

‖S+
lo,j,+‖L2→Lp

αhβ/2|y
−
j

|1−m
Lq 6 Ch−1/p,

and

‖S+
lo,j,+‖L2→Lp

αh(1−m)/(1+m)
Lq 6 Ch−(1+β)/p,

for (p, q) in the same range and constants independent of h.

The proof is exactly the same as the proof of Lemma 4.6, with the exception
of the different time interval. If we sum over h−β intervals of length hβ/2|y−j |1−m

results in an interval of length h−β/2|y−j |1−m. According to Lemma 4.8 (combined

with the Egorov theorem in the h−1/2+β calculus), after this time the parametrix
and the error are both O(h∞).

4.7. Proof of Proposition 3.2. In this subsection, we see how to use the com-
puted Strichartz estimates plus the local smoothing from [CW11] to prove Propo-
sition 3.2.

From the semiclassical Strichartz estimates, if we let v(t, x) = vlk(th, x) as in
Proposition 3.2 and rescale appropriately, we get

‖χvlk‖L2n
T L2⋆ 6 Cβ‖ 〈k〉β v0

lk‖L2,

for T 6 ǫk−2/(m+1), and where χ ∈ C∞
c is any smooth, compactly supported

function. Recall that according to Lemmas 4.1, we already have perfect Strichartz
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estimates for (1 − χ)vlk if χ ≡ 1 near x = 0. Further, by Lemma 4.2, we have
perfect Strichartz estimates for large frequencies and small x: if ψ(ξ) ≡ 1 near 0,
χ(1 − ψ(−h2∆))vlk obeys perfect Strichartz estimates.

Let χ and ψ be such cutoffs. In order to estimate χψvlk, we employ a duality
trick (see [BGH10]) together with the local smoothing estimates from [CW11]. Let
ϕ(s) ∈ C∞

c be a compactly supported function such that

k2/(m+1)∑

j=0

ϕ(k2/(m+1)t− j) ≡ 1, 0 6 t 6 ǫ.

Set Uj = ϕ(k2/(m+1)t− j)χψvjk. We have

(Dt + Pk)Uj = W ′
j +W ′′

j ,

where

W ′
j = ik2/(m+1)ϕ′(k2/(m+1)t− j)χψvjk ,

and

W ′′
j = ϕ(χ′′ + 2χ′∂x)ψvlk.

The important thing to observe is that W ′′
j is supported away from x = 0, so

the standard 1/2 derivative local smoothing estimates hold (see Theorem 2). Let
χ1 ∈ C∞

c satisfy χ1 ≡ 1 on suppχ, and χ2 ∈ C∞
c satisfy χ2 ≡ 1 on suppχ′, suppχ2

away from x = 0. We have χ1Uj = Uj , χ1W
′
j = W ′

j , and χ2W
′′
j = W ′′

j . Using the
Duhamel formula, set

U ′
j = χ1

∫ t

(j−1)ǫk−2/(m+1)

e−i(t−s)Pkχ1W
′
j(s)ds,

and

U ′′
j = χ1

∫ t

(j−1)ǫk−2/(m+1)

e−i(t−s)Pkχ2W
′′
j (s)ds,

so that U ′
j + U ′′

j = Uj . By the Christ-Kiselev lemma [CK01], it suffices to consider

U
′

j = χ1

∫ (j+1)ǫk−2/(m+1)

(j−1)ǫk−2/(m+1)

e−i(t−s)Pkχ1W
′
j(s)ds,

and similarly for W ′′
j . Let I = [(j − 1)ǫk−2/(m+1), (j + 1)ǫk−2/(m+1)] be the time

interval in the integral above. We apply the Strichartz estimates to get

‖U ′

j‖L2n
I L2⋆ 6 Ckβ

∥∥∥∥∥

∫ (j+1)ǫk−2/(m+1)

(j−1)ǫk−2/(m+1)

eisPkχ1W
′
j(s)ds

∥∥∥∥∥
L2

,

and similarly for W ′′
j . The dual estimates to Theorem 2 then yield

‖U ′

j‖L2n
I L2⋆ 6 Ckβ−1/(m+1)‖W ′

j‖L2L2 ,

and (again because χ2 is supported away from x = 0)

‖U ′′

j ‖L2n
I L2⋆ 6 Ckβ−1/2‖W ′′

j ‖L2L2 .
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By the Christ-Kiselev lemma [CK01], the same estimates hold for U ′
j and U ′′

j .

Squaring and summing in j, using ℓ2 ⊂ ℓ2n, yields

‖vlk‖2
L2n

ǫ L2⋆ 6 C
k2/(m+1)∑

j=0

(‖U ′
j‖2

L2n
ǫ L2⋆ + ‖U ′′

j ‖2
L2n

ǫ L2⋆ )

6 C
k2/(m+1)∑

j=0

(k2β−2/(m+1)‖W ′
j‖2

L2L2 + k2β−1‖W ′′
j ‖2

L2L2)

6 C(k2β+2/(m+1)‖χvjk‖2
L2

ǫL2 + k2β−1‖χ2 〈Dx〉 vlk‖2
L2

ǫL2)

6 Ck2β‖v0
lk‖2

L2 .

This proves Proposition 3.2.

5. Quasimodes

In this section we construct quasimodes for the model operator near (0, 0) in
the transversal phase space, and then use these quasimodes to show the Strichartz
estimates are near-sharp, in the sense described in Corollary 3.3.

Consider the model operator

P = −h2∂2
x −m−1x2m

locally near x = 0. We will construct quasimodes which are localized very close to
x = 0, so this should be a decent approximation. It is well-known (see [CW11])
that the operator

Q̃ = −∂2
x + x2m

has a unique ground state Q̃v0 = λ0v0, with λ0 > 0, and v0 is a Schwartz class
function. Then, by rescaling, we find the function v(x) = v0(xh

−1/(m+1)) is an
un-normalized eigenfunction for the equation

(−h2∂2
x + x2m)v = h2m/(m+1)λ0v.

Complex scaling then suggests there are resonances with imaginary part c0h
2m/(m+1).

We use a complex WKB approximation to get an explicit formula for a localized
approximate resonant state, however, as we shall see, it is not a very good approx-
imation. Nevertheless, since we will eventually be averaging in time, it is sufficient
for our applications.

Let E0 = (α+ iµ)h2m/(m+1), α, µ > 0 independent of h. Let the phase function

ϕ(x) =

∫ x

0

(E +m−1y2m)1/2dy,

where the branch of the square root is chosen to have positive imaginary part. Let

u(x) = (ϕ′)−1/2eiϕ/h,

so that

(hD)2u = (ϕ′)2u+ fu,

where

f = (ϕ′)1/2(hD)2(ϕ′)−1/2

= −h2

(
3

4
(ϕ′)−2(ϕ′′)2 − 1

2
(ϕ′)−1ϕ′′′

)
.
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Lemma 5.1. The phase function ϕ satisfies the following properties:

(i): There exists C > 0 independent of h such that

| Imϕ| 6 C

{
h(1 + log(x/h1/2)), m = 1,

h, m > 2.

In particular, if |x| 6 Ch1/(m+1), | Imϕ| 6 C′ for some C′ > 0 independent

of h.
(ii): There exists C > 0 independent of h such that

C−1
√
h2m/(m+1) + x2m 6 |ϕ′(x)| 6 C

√
h2m/(m+1) + x2m

(iii):





ϕ′ = (E +m−1x2m)1/2,

ϕ′′ = x2m−1(ϕ′)−1,

ϕ′′′ =
(
(1 −m−1)x4m−2 + E(2m− 1)x2m−2

)
(ϕ′)−3,

In particular,

f = −h2x2m−2

((
1

4
+

1

2m

)
x2m −

(
m− 1

2

)
E

)
(ϕ′)−4.

Proof. For (i) we write ϕ′ = s+ it for s and t real valued, and then

E +m−1x2m = s2 − t2 + 2ist.

Hence

s2 > s2 − t2 = αh2m/(m+1) +m−1x2m,

so that

t =
µh2m/(m+1)

2s
6

µh2m/(m+1)

2
√
h2m/(m+1)α+m−1x2m

.

Then

| Imϕ(x)| 6

∫ |x|

0

ϕ′(y)dy

6 C

∫ h1/(m+1)

0

hm/(m+1)dy + C

∫ x

h1/(m+1)

h2m/(m+1)y−mdy

=

{
O(h(1 + log(x/h1/2))), m = 1,

O(h), m > 1.

Parts (ii) and (iii) are simple computations.
�

In light of this lemma, |u(x)| is comparable to |ϕ′|−1/2, provided |x| 6 Ch1/2

when m = 1. We are only interested in sharply localized quasimodes and in the
case m > 2, so let γ = h1/(m+1), choose χ(s) ∈ C∞

c (R) such that χ ≡ 1 for |s| 6 1
and suppχ ⊂ [−2, 2]. Let

ũ(x) = χ(x/γ)u(x),
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and compute for q > 2:

‖ũ‖q
Lq =

∫

|x|62γ

χ(x/γ)q|u|qdx

∼
∫

|x|62γ

χ(x/γ)q|ϕ′|−q/2dx

∼ h1/(m+1)h−qm/2(m+1)

∼ h(2−qm)/2(1+m).

In particular,

‖ũ‖L2 ∼ h(1−m)/2(1+m),

and so

‖ũ‖Lq ∼ h(2/q−1)/2(m+1)‖ũ‖L2 .

Further, ũ satisfies the following equation:

(hD)2ũ = χ(x/γ)(hD)2u+ [(hD)2, χ(x/γ)]u

= (ϕ′)2ũ+ fũ+ [(hD)2, χ(x/γ)]u

= (ϕ′)2ũ+R,

where

R = fũ+ [(hD)2, χ(x/γ)]u.

Lemma 5.2. The remainder R satisfies

(5.1) ‖R‖L2 = O(h2m/(m+1))‖ũ‖L2.

Proof. We have already computed the function f , which is readily seen to satisfy

‖f‖L∞(supp (ũ)) = O(h2m/(m+1)),

since supp (ũ) ⊂ {|x| 6 2h1/(m+1)}.
On the other hand, since ‖ũ‖L2 ∼ h(1−m)/2(1+m), we need only show that

‖[(hD)2, χ(x/γ)]u‖L2 6 Ch(3m+1)/2(m+1).

We compute:

[(hD)2, χ(x/γ)]u = −h2γ−2χ′′u+ 2
h

i
γ−1χ′hDu

= −h2γ−2χ′′u+ 2
h

i
γ−1χ′

(
− h

2i

ϕ′′

ϕ′
+ ϕ′

)
u

= −h2γ−2χ′′u+ 2
h

i
γ−1χ′

(
− h

2i

x2m−1

(ϕ′)2
+ ϕ′

)
u.

The first term is estimated:

‖h2γ−2χ′′u‖L2 = O(h2m/(m+1))‖u‖L2(supp (ũ)) = O(h(3m+1)/2(m+1)).
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Similarly, the remaining two terms are estimated:

∥∥∥∥∥2
h

i
γ−1χ′

(
− h

2i

x2m−1

(ϕ′)2
+ ϕ′

)
u

∥∥∥∥∥
L2

= O(hm/(m+1)h1h(2m−1)/(m+1)h−2m/(m+1))‖u‖L2(supp (ũ))

+ O(hm/(m+1)h2m/(m+1))‖u‖L2(supp (ũ))

= O(h(3m+1)/2(m+1)).

�

5.1. Saturation of Strichartz estimates. In this subsection, we study Strichartz
estimates for the separated Schrödinger equation given the specific choice of initial
conditions in the form of quasimodes.

Now it is well known that for any k, there exists a spherical harmonic vk of order
k which saturates Sogge’s bounds (Theorem 3):

−∆Sdvk = (k)(k + d− 1)vk, ‖vk‖L2(d+1)/(d−1) ∼ k(d−1)/2(d+1)‖vk‖L2 .

Let λk = k(k + n − 2), k ≫ 1, h = λ
−1/2
k , let ũ be the associated transversal

quasimode constructed in the previous section, and let

ϕ0(x, θ) = vk(θ)ũ(x).

Let ϕ(t, x, θ) = eitτϕ0 for some τ ∈ C to be determined. Since the support of ũ
is very small, contained in {|x| 6 h1/(m+1)/κ}, we have

A−2 = (1 + x2m)−1/m = 1 − 1

m
x2m + O(h4m/(m+1))

on supp ũ. Then

(Dt + ∆̃)ϕ = Pkϕ

= (τ −D2
x −A−2λk − V1(x))ϕ

= λke
itτeikθ

[(
τλ−1

l − (λ−1
k D2

x + 1 − 1

m
x2m)

)
ũ+ O(k−2)ũ

]

= λke
itτeikθ

[(
τλ−1

k − 1 − E0

)
ũ+R+ O(k−2)ũ

]
,

where R satisfies the remainder estimate (5.1). Set

τ = λk(1 + E0) = λk(1 + αk−2m/(m+1)) + iµk2/(m+1)(1 + O(k−1)), α, µ > 0

so that we have {
(Dt + ∆̃)ϕ = R̃,

ϕ(0, x, θ) = ϕ0

with

(5.2) R̃ = λke
itτvk(R(x, k) + O(k−2)ũ).
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We compute the endpoint Strichartz estimate on an arbitrary time interval [0, T ],
with p = 2, q = 2⋆ = 2n/(n− 2) for n > 3:

‖ϕ‖2
L2([0,T ])Lq =

∫ T

0

‖eitτϕ0‖2
Lqdt

=

∫ T

0

e−2t Im τ‖ϕ0‖2
Lqdt

=
1 − e−2T Im τ

2 Im τ
‖ϕ0‖2

Lq

=
1 − e−2T Im τ

2 Im τ
‖ϕ0‖2

Lq

∼ 1 − e−2T Im τ

2 Im τ
k(1−2/q)/(m+1)k(n−2)/n‖ũ‖2

L2(R)‖vk‖2
L2(Sn−1)

∼ k2η(m,n)‖ϕ0‖2
L2

∼ ‖(−∆Sn−1)η(m,n)ϕ0‖2
L2 ,(5.3)

where

η(m,n) =
1

2(m+ 1)

(
m

(
1 − 2

n

)
− 1

)
.

Now let L(t) be the unitary Schrödinger propagator:
{

(Dt + ∆̃)L = 0,

L(0) = id ,

and write using Duhamel’s formula:

ϕ(t) = L(t)ϕ0 + i

∫ t

0

L(t)L∗(s)R̃(s)ds =: ϕh + ϕih,

where ϕh and ϕih are the homogeneous and inhomogeneous parts respectively. We
want a lower bound on the homogeneous Strichartz estimates, for which we need
an upper bound on the inhomogeneous Strichartz estimates.

Let us now assume for the purposes of contradiction that a better Strichartz
estimate than that in Corollary 3.3 holds for all β > 0. That is, we assume for each
β > 0, there exists Cβ such that

‖L(t)u0‖L2([0,T ])L2⋆ 6 Cβ‖ 〈−∆Sn−1〉r+β
u0‖L2,

for some r < η(m,n)/2.
In dimension n = 2, we take as usual p > 2, 2 6 q < ∞, and we immediately

arrive at a contradiction to the scale-invariant case.
For dimension n > 3, we take β > 0 sufficiently small that r+β < η(m,n)/2, and

we then have the complementary inhomogeneous Strichartz estimate: if v solves
{

(Dt + ∆̃)v = F,

v(0) = 0,

then

‖v‖L2([0,T ])L2⋆ 6 C‖ 〈−∆Sn−1〉r+β
F‖L1([0,T ])L2 .
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For the inhomogeneous part corresponding to our quasimode initial data, we
have F = R̃, with R̃ computed in (5.2). Then

‖ϕih‖L2([0,T ])L2⋆

6 CT 1/2‖R̃‖L2([0,T ])L2

6 Ck2T 1/2

(∫ T

0

e−2t Im τ‖ 〈−∆Sn−1〉r+β
vk(R(x, k) + O(k−2)ũ)‖2

L2dt

)1/2

6 Ck2k−2m/(m+1)

(
1 − e−2T Im τ

2 Im τ

)1/2

‖ 〈−∆Sn−1〉r+β ϕ0‖L2 .

Recalling that Im τ ∼ k−2/(m+1), if T = ǫ2k−2/(m+1), we have

(5.4) ‖ϕh‖L2([0,T ])L2⋆ 6 Cǫ‖ 〈−∆Sn−1〉r+β ϕ0‖L2 .

Now, if ǫ > 0 is sufficiently small, but independent of k, we have

1 > 1 − e−2T Im τ > c0,

for some c0 > 0, so that for this choice of T , we still have the estimate (5.3).
Combining (5.3) with (5.4) we have

C‖ 〈−∆Sn−1〉r+β
ϕ0‖L2 > ‖L(t)ϕ0‖L2([0,T ])L2⋆

> ‖ϕ(t)‖L2([0,T ])L2⋆ − ‖ϕih‖L2([0,T ])L2⋆

> C−1‖ 〈−∆Sn−1〉η(m,n)/2
ϕ0‖L2 ,

for some constant C > 0 independent of k. But this is a contradiction, since
r + β < η(m,n)/2. This proves the near-sharpness of Corollary 3.3.
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