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Abstract. For a large class of semiclassical operators P (h)−z which includes
Schrödinger operators on manifolds with boundary, we construct the Quantum

Monodromy operator M(z) associated to a periodic orbit γ of the classical
flow. Using estimates relating M(z) and P (h) − z, we prove semiclassical
estimates for small complex perturbations of P (h) − z in the case γ is semi-
hyperbolic. As our main application, we give logarithmic lower bounds on
the mass of eigenfunctions away from semi-hyperbolic orbits of the associated
classical flow.

As a second application of the Monodromy Operator construction, we prove
if γ is an elliptic orbit, then P (h) admits quasimodes which are well-localized
near γ.

1. Introduction

1.1. Statement of Results. To motivate our general results, we first present a few
applications. Suppose (X, g) is a compact Riemannian manifold with or without
boundary. Let −∆g be the Laplace-Beltrami operator on X and assume u solves
the eigenvalue problem

−∆gu = λ2u, ‖u‖L2(X) = 1.

Assume γ is a closed semi-hyperbolic geodesic satisfying either γ ∩ ∂X = ∅, or
the reflection at the boundary is transversal. Then if U is a sufficiently small
neighbourhood of γ, we prove∫

X\U

|u|2dx ≥
C

log |λ|
, |λ| → ∞.(1.1)

From [Chr1, Chr1a], we have an application to sub-exponential decay of L2

energy for the damped wave equation: suppose a(x) is positive outside of U and u
satisfies { (

∂2
t −∆ + 2a(x)∂t

)
u(x, t) = 0, (x, t) ∈ X × (0,∞)

u(x, 0) = 0, ∂tu(x, 0) = f(x).

Then for every ε > 0 there exists C > 0 such that

‖∂tu‖
2
L2(X) + ‖∇u‖2L2(X) ≤ Ce

−t1/2/C‖f‖2Hε(X).

In addition, we have two dispersive type estimates from [Chr2]. The first is
a local smoothing estimate for the Schrödinger equation. Suppose X is a non-
compact manifold which is asymptotically Euclidean, and there is a hyperbolic
closed geodesic γ ⊂ U b X . Then for every ε > 0 there exists C > 0 such that

∫ T

0

∥∥∥ρseit(∆g−V (x))u0

∥∥∥
2

H1/2−ε(X)
dt ≤ C‖u0‖

2
L2(X),

1
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where ρs ∈ C∞(M) satisfies

ρs(x) ≡ 〈dg(x, x0)〉
−s

for x0 fixed and x outside a compact set, and V ∈ C∞(M), 0 ≤ V ≤ C satisfies

|∇V | ≤ C 〈dist (x, x0)〉
−1−δ

for some δ > 0.
The second dispersive estimate is a sub-exponential local energy decay rate for

solutions to the wave equation in odd dimensions n ≥ 3. Suppose X is a non-
compact Riemannian manifold which is Euclidean outside a compact set, and sup-
pose u solves

{
(−D2

t −∆g + V (x))u(x, t) = 0, X × [0,∞)
u(x, 0) = u0 ∈ H1(X), Dtu(x, 0) = u1 ∈ L2(X)

for u0 and u1 smooth, compactly supported, where V ∈ C∞(M) satisfies

exp(−dist g(x, x0)
2)V = o(1).

Let ψ ∈ C∞(X) satisfy

ψ ≡ exp(−dist g(x, x0)
2)

for x outside a compact set and x0 fixed. Then for every ε > 0 there exists C > 0
such that

‖ψ∂tu‖
2
L2(X) + ‖ψu‖2H1(X)

≤ Ce−t
1/2/C

(
‖∂tu(x, 0)‖2Hε(X) + ‖u(x, 0)‖2H1+ε(X)

)
.

For the general statement of results, let X be a smooth, compact manifold. In
this introduction, we state the Main Theorem only in the case ∂X = ∅. The case

with boundary will be considered in §2. We take P (h) ∈ Ψk,0
h for k ≥ 1 and assume

P (h) is of real principal type. That is, if p = C∞(T ∗X) is the principal symbol of
P (h), then p is real-valued, independent of h. Assume p−1(E) is a smooth, compact
hypersurface and dp(x, ξ) 6= 0 for energies E near 0. We assume p is elliptic outside
of a compact subset of T ∗X : there exists C > 0 such that

|ξ| > C =⇒ p(x, ξ) ≥ 〈ξ〉k /C.

Let Φt = exp tHp be the Hamiltonian flow of p, and suppose Φt has a closed,
semi-hyperbolic orbit γ ⊂ {p = 0} of period T . The assumption that γ be semi-
hyperbolic means if N is a Poincaré section for γ and S : N → S(N) is the
Poincaré map, then the linearization of S, dS(0), is nondegenerate and has at least
one eigenvalue off the unit circle. For the eigenvalues of modulus 1 we also require
the following nonresonance assumption for the Poincaré map at the energy 0:

{
if e±iα1 , e±iα2 , . . . , e±iαk are eigenvalues of modulus 1, then
α1, α2, . . . , αk are independent over πZ.

(1.2)

Our Main Theorem is that for a family of eigenfunctions u(h) for P (h),

P (h)u(h) = E(h)u(h), E(h)→ 0 as h→ 0,
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u(h) has its mass concentrated away from γ. This is made precise in the following
theorem.1

Main Theorem. Let A ∈ Ψ0,0
h (X) be a pseudodifferential operator whose principal

symbol is 1 near γ and 0 away from γ. There exist constants h0 > 0 and C > 0
such that

‖u‖ ≤ C
log(1/h)

h
‖P (h)u‖+ C

√
log(1/h)‖(I −A)u‖

uniformly in 0 < h < h0, where the norms are L2 norms on X. In particular, if
u(h) satisfies

{
P (h)u(h) = O(h∞);
‖u(h)‖L2(X) = 1,

‖(I −A)u‖L2(X) ≥
1

C
(log (1/h))−1/2 , 0 < h < h0.

Remark 1.1. In §2 we assume P (h) ∈ Diff2
h(X) is a differential operator on X and

that ∂X is noncharacteristic with respect to the principal symbol of P (h). Then a
similar conclusion to the Main Theorem holds (see Main Theorem’ in that section).

Remark 1.2. In §9, we give a partial converse to the Main Theorem in Theorem
7. That is, the techniques of the proof of the Main Theorem are used to show if the
periodic orbit γ is elliptic, then P (h) admits quasimodes which are well-localized
to γ. This result is well-known in the literature (see, for example, [Ral], [CdV], and
[CaPo] and the references cited therein), however to our knowledge the use of the
Quantum Monodromy operator to construct these quasimodes is new.

Remark 1.3. We interpret the assumption that γ be semi-hyperbolic as follows: if
γ were fully hyperbolic, then we know from [Chr1] that the mass of eigenfunctions
cannot concentrate very rapidly (as the eigenvalue goes to infinity) near γ. However,
we know from Theorem 7 below that if γ were fully elliptic, then there are at least
approximate eigenfunctions with all their mass concentrated near γ. The rough
heuristic is that if γ is hyperbolic in at least one direction in phase space and a
sequence of eigenfunctions were to concentrate rapidly near γ, then they would have
to do so in a lower dimensional set - a clear violation of the uncertainty principle.
Of course the proof is quite a bit more technical. The nonresonance assumption on
the elliptic eigenvalues is necessary in order to assume there are no other periodic
orbits in a neighbourhood of γ in the set {p = 0}. This in turn implies (see, for
instance [AbMa, Theorem 28.5]) that there is a range of energy surfaces {p = z}
near z = 0 in which there is an isolated periodic semi-hyperbolic orbit. The family
of these orbits is diffeomorphic to a cylinder.

Remark 1.4. The estimates in this work are all microlocal in nature, hence we
lose nothing by assuming X is compact. In order to apply these estimates in the
case of non-compact manifolds, we assume P is elliptic outside a compact set (that

is, |p| ≥ 〈ξ〉k /C for |(x, ξ)| ≥ C) and the geometry is non-trapping outside of a
compact submanifold and then apply our results there. See [Chr2] for more on this.

1In the interest of length, for background, definitions, and standard material referenced in this
paper, we refer the reader to [Chr1, §2] and the references cited therein, as well as to the excellent
online book of Evans-Zworski [EvZw].
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The Main Theorem is the similar to [Chr1, Main Theorem] with three gener-
alizations, namely that we no longer assume the linearized Poincaré map has no
negative eigenvalues, we allow some eigenvalues of modulus 1, and in §2 we allow γ
to reflect transversally off ∂X with some extra assumptions on P (h). This allows
study of, for example, billiard problems in any dimension. The problems encoun-
tered in [Chr1] with these cases come from attempting to put p into a normal form
in a neighbourhood of γ ⊂ T ∗X .

The motivation for the proof in this paper is to reduce the problem of studying
the resolvent (P − z)−1 in a microlocal neighbourhood of γ to studying a related
operator on the Poincaré section N .

If we identify N with T ∗
0N ' R2n−2 near 0, we are led to study operators acting

on L2(V ), where V ⊂ Rn−1. In the course of this work, we will see the relevent
object of study is the Quantum Monodromy operator M(z) : L2(V ) → L2(V ). By
setting up a Grushin problem in a neighbourhood of

γ × (0, 0) ⊂ T ∗X × T ∗
R
n−1,

and using the microlocal inverse constructed by Sjöstrand-Zworski in [SjZw1], we
will see it is sufficient to bound ‖I−M(z)‖L2(V )→L2(V ) from below. This will result
in the following theorem.

Theorem 1. Suppose P ∈ Ψk,0
h is a semiclassical pseudodifferential operator of

real principal type satisfying all of the assumptions of the introduction, and assume
γ ∩ ∂X = ∅. Then there exist positive constants C, c0, h0, ε0, and a positive
integer N such that for 0 < h < h0, z ∈ [−ε0, ε0] + i(−c0h, c0h), if u ∈ L2(X) has
h-wavefront set sufficiently close to γ, then

‖(P − z)u‖L2(X) ≥ C
−1hN‖u‖L2(X).(1.3)

Theorem 1 allows us to add a complex absorption term of order h supported
away from γ. Let a ∈ C∞(T ∗X) equal 0 in a neighbourhood of γ and 1 away from
γ, and define

Q(z)u = P (h)− z − ihCaw(1.4)

for a constant C > 0 to be chosen later. Then a semiclassical adaptation of the
“three-lines” theorem from complex analysis, will allow us to deduce the following
estimate.

Theorem 2. Suppose Q(z) is given by (1.4), and

z ∈ [−ε0/2, ε0/2] + i(−ch/ log(1/h), ch/ log(1/h))

for ε0, c > 0 sufficientlyl small. Then there is h0 > 0 and 0 < C <∞ such that for
0 < h < h0,

∥∥Q(z)−1
∥∥
L2(X)→L2(X)

≤ C
log(1/h)

h
.(1.5)

As an intermediate step to proving Theorem 2, we first prove a similar statement
about an operator with a larger absorbing term. Let W ∈ C∞(T ∗X), W ≡ 0 in a
small neighbourhood of γ and W ≡ 1 away from γ. We define a perturbed family
of operators

Q̃(z) = P (h)− z − iWw.(1.6)

We have the following Theorem.
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Figure 1. A con-
fining potential V (x)
with two bumps at
the lowest energy
level E < 0.

γ

V (x) = 0

Figure 2. The
level set V (x) = 0
and the closed hy-
perbolic orbit γ re-
flecting off the “soft”
boundary.

Theorem 3. Suppose Q̃(z) is as above, z ∈ [−ε0/2, ε0/2], and W ≡ 1 outside a
sufficiently small neighbourhood of γ. Then there is h0 > 0 and 0 < C < ∞ such
that for 0 < h < h0,

∥∥∥Q̃(z)−1
∥∥∥
L2(X)→L2(X)

≤ C
log(1/h)

h
.(1.7)

If ϕ ∈ C∞c (X) is supported away from γ, then

∥∥∥Q̃(z)−1ϕ
∥∥∥
L2(X)→L2(X)

≤ C

√
log(1/h)

h
.(1.8)

Theorem 2 follows from Theorem 3 using the control theory arguments exactly
as in [Chr1a].

1.2. Examples. There are many examples in which the hypotheses of the theorem
are satisfied, the simplest of which is the case in which p = |ξ|2−E(h) for E(h) > 0.
Then the Hamiltonian flow of p is the geodesic flow, so if the geodesic flow has a
closed semi-hyperbolic orbit, there is non-concentration of eigenfunctions, u(h), for
the equation

−h2∆u(h) = E(h)u(h).

Another example of such a p is the case p = |ξ|2 + V (x), where V (x) is a confining
potential with two “bumps” or “obstacles” in the lowest energy level (see Figure
1). In the appendix to [Sjö] it is shown that for an interval of energies V (x) ∼
0, there is a closed hyperblic orbit γ of the Hamiltonian flow which “reflects”
off the bumps (see Figure 2). Complex hyperbolic orbits may be constructed by
considering 3-dimensional hyperbolic billiard problems (see, for example, [AuMa,
§2]). In addition, Proposition 4.3 from [Chr1] gives a somewhat artificial means of
constructing a manifold diffeomorphic to a neighbourhood in T ∗S1

(t,τ) × T
∗R

n−1
(x,ξ)

which contains a hyperbolic orbit γ by starting with the Poincaré map γ is to have.
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In the appendix, we examine the Riemannian manifold

M = Rx/Z× Ry × Rz

equipped with the metric

ds2 = cosh2 y(2z4 − z2 + 1)2dx2 + dy2 + dz2,

which has a semi-hyperbolic closed geodesic at y = z = 0 and two hyperbolic
closed geodesics at y = 0, z = ±1/2. Restricting y and z to compact intervals
yields a compact manifold satisfying the hypotheses of the Main Theorem, while
the non-compact manifold provides a model for possibly extending the dispersive-
type estimates to the semi-hyperbolic case.

1.3. Organization. This work is organized as follows. In §2 we first state the
versions of Theorems 1, 2, and the Main Theorem in the case of a compact man-
ifold with boundary, then review the classical picture of a closed orbit reflecting
transversally off the boundary, and prove a propagation of singularities result at
the boundary. §3 gives the definition and basic facts about the Quantum Mon-
odromy operator M(z), while §4 shows how M(z) arises naturally in the context
of a Grushin problem. §5 presents the main ideas of the proof of Theorem 1 by
considering a model. In §6-7 the proof of Theorem 1 is presented, while the proof
of Theorem 2 and the Main Theorem is reserved for §8. Finally, in §9, we show
how the Monodromy operator construction can be used to construct well-localized
quasimodes if γ is elliptic. In the appendix, we provide a concrete example of a
semi-hyperbolic orbit.

1.4. Acknowledgements. The author would like to thank Maciej Zworski for
much help and support during the writing of this work, as well as Nicolas Burq for
suggesting study of the monodromy operator as a means of tackling the boundary
problem. He would also like to thank Herbert Koch for suggesting the generalization
to semi-hyperbolic orbits, and Michael Hitrik for much help in working out the
model case for Theorem 7. The majority of this work was conducted while the
author was a graduate student in the Mathematics Department at UC-Berkeley
and he is very grateful for the support received while there.

2. Manifolds with Boundary and Propagation of Singularities

In this section, X is a smooth, compact, n-dimensional manifold with bound-
ary. We assume P ∈ Diff2,0

h,db is a second order differential operator whose principal
symbol p is a quadratic form in ξ and ∂X is noncharacteristic with respect to p.
We adopt a microlocal viewpoint in which ∂X is identified locally with a nonchar-
acteristic hypersurface Y ⊂ Rn. Our local model for X near Y is X = Rn with
Y = {x ∈ Rn : x1 = 0}. We study the boundary value problem

{
(P − z)u = f in X,
u = 0 on Y,

(2.1)

in a neighbourhood of a closed bicharacteristic for the flow ofHp reflecting transver-
sally off Y , and for energies z near 0. Our final goal is to describe propagation of
singularities at the boundary. First we will prove factorization lemmas and energy
estimates near Y , and then prove the main result of this section, which is that the
microlocal propagator of P − z can be extended in a meaningful way through the
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reflections at the boundary. The Main Theorem has the following analogue in the
case γ reflects transversally off ∂X (see §2.1 for definitions).

Main Theorem’. Suppose P (h) ∈ Diff2
h(X) and ∂X is noncharacteristic with

respect to the principal symbol of P (h). Assume γ makes only transversal reflections

with ∂X. Let A ∈ Ψ0,0
h,db(X) be a pseudodifferential operator whose principal symbol

is 1 near γ and 0 away from γ. There exist constants h0 > 0 and C > 0 such that

‖u‖ ≤ C
log(1/h)

h
‖P (h)u‖+ Clog(1/h)‖(I −A)u‖

uniformly in 0 < h < h0, where the norms are L2 norms on X. In particular, if
u(h) satisfies

{
P (h)u(h) = O(h∞);
‖u(h)‖L2(X) = 1,

‖(I −A)u‖L2(X) ≥
1

C
log ((1/h))

−1
, 0 < h < h0.

As in §1, Main Theorem’ is a consequence of the following versions of Theorems
1 and 2 in the case of a manifold with boundary.

Theorem 1’. Suppose P (h) ∈ Diff2
h(X) and ∂X is noncharacteristic with respect

to the principal symbol of P (h). Assume γ makes only transversal reflections with
∂X. Then there exist positive constants C, c0, h0, ε0, and a positive integer N such
that for 0 < h < h0, z ∈ [−ε0, ε0] + i(−c0h, c0h), if u ∈ L2(X) has h-wavefront set
sufficiently close to γ, then

‖(P − z)u‖L2(X) ≥ C
−1hN‖u‖L2(X).(2.2)

As in the introduction, we add a complex absorbing term: let aw ∈ Ψh,db equal
0 in a neighbourhood of γ and 1 away from γ (according to the equivalence relation
defined in §2.1), and define as usual

Q(z)u = P (h)− z − ihCaw

for a constant C > 0 to be chosen later. We have the following version of Theorem
2.

Theorem 2’. Suppose Q(z) is given as above, and

z ∈ [−ε0/2, ε0/2] + i(−ch/ log(1/h), ch/ log(1/h))

for ε0, c > 0 sufficientlyl small. Then there is h0 > 0 and 0 < C <∞ such that for
0 < h < h0,

∥∥Q(z)−1
∥∥
L2(X)→L2(X)

≤ C
log(1/h)

h
.(2.3)

Just as in the introduction, before proving Theorem 2, we first need an auxiliary
theorem. Let W ∈ C∞(T ∗X), W ≡ 0 in a small neighbourhood of γ and W ≡ 1
away from γ (again using the equivalence relations in §2.1). We define a perturbed
family of operators

Q̃(z) = P (h)− z − iWw.

We have the following Theorem.
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Theorem 3’. Suppose Q̃(z) is as above, z ∈ [−ε0/2, ε0/2], and W ≡ 1 outside a
sufficiently small neighbourhood of γ. Then there is h0 > 0 and 0 < C < ∞ such
that for 0 < h < h0,

∥∥∥Q̃(z)−1
∥∥∥
L2(X)→L2(X)

≤ C
log(1/h)

h
.(2.4)

If ϕ ∈ C∞c (X) is supported away from γ, then

∥∥∥Q̃(z)−1ϕ
∥∥∥
L2(X)→L2(X)

≤ C

√
log(1/h)

h
.(2.5)

Theorem 2 follows from Theorem 3 using the control theory arguments exactly
as in [Chr1a].

2.1. Normally Differential Operators. In the caseX is a smooth manifold with
boundary, we define pseudodifferential operators which are differential in the nor-
mal direction at the boundary microlocally. For a microlocal definition, it suffices
to assume X = {x1 ≥ 0} and ∂X = {x1 = 0}. Then the algebra of pseudodiffer-
ential operators which are normally differential at the boundary is defined by the
following:

Ψk,m
h,db(X,Ω

1
2

X) =
{
A(x, hDx) ∈ Ψk,m

h :

A(x, hDx) =
k∑

j=0

Aj(x, hDx′)(hDx1)
j
}
.

Suppose ϕ ∈ C∞(X,Ω
1
2

X), and x0 ∈ ∂X . Using local coordinates at the bound-

ary, we write x0 = (0, x′0) ∈ {x1 ≥ 0}. Then ϕ ∈ C∞(X,Ω
1
2

X) means there is
a smooth extension ϕ̃ to an open neighbourhood of x0 ∈ Rn. For a distribution

u ∈ D′(X,Ω
1
2

X), we extend the notion of WFh(u) to a neighbourhood of the bound-
ary. We say (x0, ξ0) = (0, x′0, ξ0) is not in WFh(u) if there is a product neighbour-

hood (x0, ξ0) ∈ U×V ⊂ R2n and a normally differential operator A ∈ Ψ0,0
h,db(U,Ω

1
2

U )

such that σh(A)(x0, ξ0) 6= 0 and

Au ∈ h∞C∞((0, 1]h; C
∞(U,Ω

1
2

U )).

Observe if u is smooth,

(WFhu)|∂X ⊂WFh(u|∂X) t (supp (u|∂X)×N∗(∂X)).

Similarly, using our identification of the h-wavefront set of a pseudodifferential
operator as the essential support of its symbol, A ∈ Ψ0,0

h,db with σh(A) 6= 0 at

(0, x′0, ξ0) implies the ξ1 direction is always contained in the h-wavefront set of A.
We are going to be interested in symbols which are compactly supported in T ∗X ,

so we will need a notion of microlocal equivalence near the boundary which allows us
to consider operators which are both normally differential and compactly supported
in phase space. For this we return to our local coordinates at the boundary. Let
x0 ∈ ∂X , x0 = (0, x′0), and let U ×V be a product neighbourhood of (x0, 0) in R2n

such that V is of the form V = [−ε0, ε0]ξ1 × Vξ′ . By using the rescaling

(x1, ξ1) 7→ (x1/λ, λξ1),
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(x′

0, ξ′0)

T ∗X

γ+

γ−

T ∗Y

ξ1

ξ1 = −r
1
2 (0, x′

0
, ξ′

0
)

γ+γ−

T ∗Y

ξ1 = r
1
2 (0, x′

0
, ξ′

0
)

Figure 3. The incoming and outgoing bicharacteristics. Observe
the reflection of γ is continuous in a neighbourhood of H in T ∗Y
but not in T ∗X , while the transmission of γ is continuous in both.

the ellipticity of P outside a compact set implies p ≥ C−1 in

({[−ε0, ε0])× Vξ′ .

Choose ψ ∈ C∞(R) satisfying

ψ(t) ≡ 1 for |t| ≤ ε0,(2.6)

ψ(t) ≡ 0 for |t| ≥ 2ε0.(2.7)

We say two semiclassically tempered operators T and T ′ are microlocally equivalent
near (U × V )2 if for all A,A′ ∈ Ψ0,0

h,db satisfying

proj(x,ξ′)(WFhA) is sufficiently close to U × Vξ′ ,

and similarly for A′,

ψ(P (h))A(T − T ′)ψ(P (h))A′ = O(h∞) : D′(X)→ C∞(X).

In particular, if A ∈ Ψ0,0
h.db, we say A is microlocally equivalent to

ψ(P (h))A

and we will use this identification freely throughout.

2.2. Propagation of Singularities. This section is basically a semiclassical adap-
tation of some of the propagation of singularities results at the boundary presented
in [Hor, Chap. 23]. According to [Hor, App. C.5], under the noncharacteristic
assumption we can find local symplectic coordinates near Y so that Y = {x1 = 0}
and (possibly after a sign change)

p(x, ξ) = ξ21 − r(x, ξ
′), ξ′ = (ξ2, . . . , ξn).(2.8)

We define the hyperbolic set H ⊂ T ∗Y :

H := {(x′, ξ′) : r(0, x′, ξ′) > 0},

on the lift of which the characteristic equation has the two roots {x1 = 0, ξ1 =

±r(x, ξ′)
1
2 }. Thus the Hamiltonian vector field of p,

Hp = 2ξ1∂x1 − ∂ξ′r∂x′ + ∂xr∂ξ

points from Y into {x1 > 0} or {x1 < 0}, respectively, depending on which root of
r we choose. We call the corresponding bicharacteristic rays outgoing and incoming
and write γ+ and γ− respectively (see Figure 3). We have the following factorization
of the operator P − z in our microlocal coordinates.
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Lemma 2.1. There is a factorization of P − z near H:

P − z = (hD1 −A−(x, hD′))(hD1 −A+(x, hD′))

with A± ∈ Ψ1,0
h,db having principal symbol ±r

1
2 .

Remark 2.2. We remark r(x, ξ′) and A±(x, hD′) implicitly depend on the energy
z, although we don’t explicitly note this dependence where no ambiguity can arise.

Proof. We follow the proof for the h independent version of the lemma found in
[Hor, Lemma 23.2.8]. Using the coordinates above, the principal symbol of P − z

is (2.8). Set A1
± = Op(±r

1
2 ) so that

P − z − (hD1 −A
1
−)(hD1 −A

1
+) = R1(x, hD) microlocally,

where σhR1 = O(h) is independent of ξ1.

Suppose now we have Aj± with principal symbols ±r
1
2 such that

P − z − (hD1 −A
j
−)(hD1 −A

j
+) = Rj(x, hD) microlocally,

where σhRj = O(hj) is independent of ξ1. Choose aj−(x, ξ′) = O(hj) satisfying

σhRj(x, ξ
′) + 2aj−(x, ξ′)r

1
2 (x, ξ′) = 0,

which we can do since r
1
2 > 0 near H . We will similarly add aj+(x, hD′) to Aj+,

where aj+ = O(hj) is determined by the following calculation:

P − z − (hD1 −A
j
− − a

j
−(x, hD′))(hD1 −A

j
+ − a

j
+(x, hD′)) =

= Rj(x, hD) − aj−(x, hD′)(hD1 −A
j
+)− (hD1 −A

j
−)(aj+(x, hD′))

+aj−(x, hD′)aj+(x, hD′) microlocally.

On the level of principal symbol, this yields the requirement that

σhRj(x, ξ
′)− aj−(x, ξ′)(ξ1 − r

1
2 (x, ξ′))− (ξ1 + r

1
2 (x, ξ′))aj+(x, ξ′) =

= −aj−(x, ξ′)(ξ1 + r
1
2 (x, ξ′))− (ξ1 + r

1
2 (x, ξ′))aj+(x, ξ′)

= 0,

which gives aj+(x, ξ′) = −aj−(x, ξ′). By induction and Borel’s Lemma the argument
is complete. �

We have also a microlocal factorization P − z = (hD1 − Ã+)(hD1 − Ã−), where

the principal symbols of Ã± are ±r
1
2 as in the lemma. Suppose the γ± intersect

T ∗Y at (x′0, ξ
′
0). On γ− we have ξ1 = −r

1
2 , so (hD1− Ã+) is elliptic near γ−. Then

to solve (2.1), we need only solve (hD1 − Ã−)u = (hD1 − Ã+)−1f = f̃ .

Lemma 2.3. Suppose u solves the following Cauchy problem in Rn
+:

{
(hD1 − Ã−)u = f̃ , x1 > 0
u|x1=0 = ϕ(x′).

(2.9)

Then

sup
0≤y≤T0

‖u(y, ·)‖L2
x′

(Rn−1×{x1=y}) ≤(2.10)

≤ C‖ϕ‖L2
x′

(Rn−1×{x1=0}) +
CT0

h
‖f̃‖L1([0,T0],L2(Rn−1)).
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Proof. Consider

1

2
∂y‖u(y, ·)‖

2
L2(Rn−1×{x1=y})

= 〈∂yu, u〉x′

= −
Im

h
〈hD1u, u〉x′

≤
1

h
‖u(y, ·)‖L2

x′
‖f̃(y, ·)‖L2

x′

≤
1

4h2
‖f̃(y, ·)‖2L2

x′
+ ‖u(y, ·)‖2L2

x′

which by Gronwall’s inequality gives the lemma. �

Recall the semiclassical Sobolev norms ‖ · ‖Hkh are given by

‖u‖Hkh(V ) =


∑

|α|≤k

∫

V

|(hD)αu|2dx




1
2

.

We observe that since P is elliptic outside a compact set and (hD1− Ã+) is elliptic,

replacing f̃ with f and conjugating Ã− above with the invertible operators (C +
P )s/2 for sufficiently large C > 0, we can estimate the L2 norm of v = (C+P )s/2u,
and we get the Sobolev estimate

sup
0≤y≤T0

‖u(y, ·)‖(Hsh)x′ (R
n−1×{x1=y}) ≤

≤ C‖ϕ‖(Hsh)x′ (R
n−1×{x1=0}) +

CT0

h
‖f‖L1([0,T0],Hsh(Rn−1)).

We are interested in proving the existence of a microlocal solution propagator,
hence we assume the wavefront set of f is contained in a compact set K in a
neighbourhood of γ− near Y . We assume as well that K is contained in a single
coordinate chart U on which the assumptions of [EvZw, Theorem 10.18] hold.
Suppose K ⊂ {T1 < x1 < T2} and U ⊂ {T ′

1 < x1 < T ′
2}.

Proposition 2.4. There are exactly two microlocal solutions ui, i = 1, 2 to (hD1−

Ã−)u = f̃ microlocally near γ− satisfying

u1 = 0 microlocally for x1 ≤ T1,(2.11)

u2 = 0 microlocally for x1 ≥ T2.(2.12)

Proof. First we prove the proposition in a neighbourhood of WFhf̃ . Let K̃ be the
coordinate representation of K. Apply [EvZw, Theorem 10.18] to write (hD1−Ã−)
as hD1 in these coordinates. We write in the x-projection of this coordinate patch,

u1(x) =
i

h

∫ x1

−∞

f̃(y, x′)dy,

u2(x) = −
i

h

∫ +∞

x1

f̃(y, x′)dy,

which satisfies (hD1− Ã−)u = f̃ with (2.11-2.12). Back in the original coordinates
on our manifold, set u1 = 0 for x1 ≤ T ′

1 and u2 = 0 for x1 ≥ T ′
2. To continue,
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we will employ the energy estimates in Lemma 2.3. Suppose u is a solution to
(hD1 − Ã−)u = f̃ . Then for v ∈ C∞c ([0, T0)× Rn−1),

∫ T0

0

〈
u, (hD1 − Ã−)v

〉
x′

dy =

∫ T0

0

〈f̃ , v〉x′dy +
h

i
〈u(0, ·), v(0, ·)〉x′ ,

since in the Weyl calculus real symbols are self adjoint. But from the proof of
Lemma 2.3, replacing y with T0 − y, we have since limy→T0 v(y, ·) = 0,

sup
0≤y≤T0

‖v(y, ·)‖L2
x′
≤
C

h

∫ T0

0

‖g‖L2
x′
dy,

with g = (hD1 − Ã−)v. We then have
∣∣∣∣∣

∫ T0

0

〈f̃ , v〉x′dy +
h

i
〈u(0, ·), v(0, ·)〉x′

∣∣∣∣∣ ≤
Cf̃ ,u0,·

h

∫ T0

0

‖g‖L2
x′
dy.

For h > 0 we can extend to g ∈ L2 the complex-conjugate linear form

g 7→

∫ T0

0

〈f̃ , v〉x′dy +
h

i
〈u(0, ·), v(0, ·)〉x′

by the Hahn-Banach Theorem. Thus by the Riesz Representation Theorem, for
f̃ ∈ C∞ with sufficiently small wavefront set, we can find u ∈ C∞([0, T0), L

2
x′)

satisfying (hD1 − Ã−)u = f̃ .
For the uniqueness given by the conditions (2.11-2.12), note that if f = 0 and

u(0, ·) = 0 in (2.10), u is zero. Replacing x1 by T0 − x1 we get the backwards
uniqueness result. �

Since u1 is supported in the forward direction along the bicharacteristic γ−, we
refer to u1 and u2 as the forward and backward solutions respectively. Let u− = u1

be the forward solution along the incoming bicharacteristic γ−. So far we have
proved the solution u− satisfies (P − z)u− = f near γ−, u− = 0 microlocally for
x1 larger than the support of f , and u− restricted to the boundary is controlled by
h−1 in L2 if the wavefront set of f is sufficiently small.

The same energy method techniques can be used to solve the problem
{

(P − z)u+ = 0, in X,
u+|Y = u−|Y

(2.13)

near γ+ so that u = u− − u+ solves (2.1).

Corollary 2.5. If f ∈ H∞
h has sufficiently small wavefront set and u solves (2.1),

then

u ∈ C1([0, T0], H
s
h(R

n−1))

for every s. In particular, u(y, ·) ∈ C∞(Rn−1 ×{x1 = y}) for each fixed y ∈ [0, T0].

In order to describe propagation of singularities near the boundary, we first need
the following lemma.

Lemma 2.6. Let γ+ be an interval on the outgoing bicharacteristic with one

endpoint at (0, x′0, r(0, x
′
0, ξ

′
0)

1
2 , ξ′0). Then there is a pseudodifferential operator

Q(x, hD′) ∈ Ψ0,0
h,db which satisfies

(i) σh(Q) = 0 microlocally outside a neighbourhood of

{(x, ξ′) : (x, r(x, ξ′)
1
2 , ξ′) ∈ γ+},
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(ii) Q is noncharacteristic at (x′0, ξ
′
0), and

(iii) [Q(x, hD′), hD1 −A+(x, hD′)] = 0 microlocally near γ+.

Proof. The principal symbol of the commutator [Q(x, hD′), hD1 −A+(x, hD′)] is

−ih{σhQ(x, ξ′), ξ1 − r
1
2 (x, ξ′)} = ih(∂x1 −Hr

1
2
)σhQ.

First we solve the Cauchy problem
{ (

∂x1 −Hr
1
2

)
Q0 = 0, (x, ξ) ∈ T ∗X

Q0 = q0, x1 = 0
(2.14)

so that Q0 is constant on orbits of the Hamiltonian system
{
ẋ = −∂ξ′b(x, ξ′);

ξ̇ = ∂x′b(x, ξ′),
(2.15)

where ( ˙ ) := ∂x1 and b(x, ξ′) := r
1
2 (x, ξ′). Let χx1(y, η) be a solution to (2.15) for

initial conditions close to (x′0, ξ
′
0) valid for 0 ≤ x1 ≤ T , say. If T > 0 is sufficiently

small, then χx1 is invertible and Q0(x, ξ
′) = q0(χ

−1
x1

(x′, ξ′)) is the solution to (2.14).
Now if we select q0 compactly supported and q0 = 1 in a neighbourhood of (x′0, ξ

′
0),

we satisfy conditions (i)-(ii) with

[Q0(x, hD
′), hD1 −A+(x, hD′)] = R1(x, hD

′), σhR1 = O(h2),

since ξ1 only appears as a monomial of first order in the principal symbol. Now
suppose we have Q(x, hD′) satisfying (i)-(ii) and

[Q(x, hD′), hD1 −A+(x, hD′)] = Rj(x, hD
′), σhRj = O(hj+1).

We solve the inhomogeneous Cauchy problem
{
ih (∂x1 −Hb)Qj(x, ξ

′) = −σhRj(x, ξ′), x ∈ T ∗X
Qj = qj , x1 = 0

for Qj = O(hj) and qj = O(hj), which we do by setting

Qj(x1, χx1(y, η)) = qj(y, η) + (ih)−1

∫ x1

0

σhRj(s, χs(y, η))ds.

Then Q̃ = Q+Qj satisfies (i)-(ii) and

[Q̃(x, hD′), hD1 −A+(x, hD′)] = Rj+1(x, hD
′), σhRj+1 = O(hj+2).

By induction, the argument is finished, by setting qj = 0 for j > 0. �

Now suppose ϕ ∈ C∞c (Rn−1), where we identify Y with Rn−1 near (x′0). Suppose
further that (x′0, ξ

′
0) ∈ T

∗(Rn−1) \WFhϕ and γ+ ∩ (x′0, ξ
′
0) 6= ∅ as before. Choose

Q as in Lemma 2.6 so that

[Q(x, hD′), hD1 −A+(x, hD′)] = 0

microlocally and if q is the principal symbol of Q, then q(0, x′0, ξ
′
0) 6= 0, but q(0, ·, ·)

vanishes outside a small neighbourhood of (x′0, ξ
′
0). Thus Q(x, hD′)ϕ = 0 microlo-

cally. Suppose u+ solves (2.13) with ϕ replacing u−|Y . Then Qu+ satisfies
{

(hD1 −A+(x, hD′))Q(x, hD′)u+ = 0, x1 > 0
Q(x, hD′)u+ = 0, x1 = 0

microlocally. Hence by the energy estimate (2.10) Q(x, hD′)u+ = 0 microlocally.
We conclude WFhu+ ⊂ char q.
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We have proved the following proposition.

Proposition 2.7. With the notation as in the preceding paragraphs, WFhu+ ⊂
χx1(WFhϕ) and WFhu− ⊂ χ−x1(WFhϕ). Further, as the x1 direction is reversible,
if at some 0 < x1 < T0, (y′, η′) ∈ WFhu+(x1, ·), then χ−x1(y

′, η′) ∈ WFhϕ and
χ−x1−y(y

′, η′) ∈WFhu−(y, ·) for 0 < y < T0.

In the special case Y = ∂X we have the following lemma to connect the notions
of h-wavefront set near γ+ and γ−.

Lemma 2.8. Let (x′0, ξ
′
0) ∈ H ∩ γ be the reflection point at the boundary, let χx1

be a solution to (2.15) as above, and let ϕt = exp(tHp). Then there is an odd
diffeomorphism t = t(x1) and a function ξ1 = ξ1(x1) such that (x1, ξ1;χx1) lies on
γ+ and (x1, ξ1;χ−x1) lies on γ− for x1 > 0 sufficiently small. That is, χx1(x

′
0, ξ

′
0)

coincides with the (x′, ξ′) components of

ϕt(0, x
′
0, r

1
2 (0, x′0, ξ

′
0), ξ

′
0),

Proof. Write b(x, ξ′) = r
1
2 (x, ξ′) as in the proof of Lemma 2.6, and note χ−x1 is

the solution to (2.15) with b replaced with −b. ϕt satisfies the following differential
equation on γ+:





∂tx1 = 2b
∂tx

′ = −2bbξ′

∂tξ1 = 2bbx1

∂tξ
′ = 2bbx′ ;

x1(0) = 0
x′(0) = x′0
ξ1(0) = b(0, x′0, ξ

′
0)

ξ′(0) = ξ′0.

Set (y′(x1), η
′(x1)) = χx1(x

′
0, ξ

′
0),

t(x1) :=

∫ x1

0

(2b(y, y′(y), η′(y)))−1dy,(2.16)

and calculate

∂

∂x1
x′ =

∂

∂t
x′

∂t

∂x1

= −bξ′(x1, x
′, ξ′)

=
∂

∂x1
y′.

As x′ and y′ have the same initial conditions, we conclude they are equal for suffi-
ciently small x1. For negative t, we define t = t(x1) in the incoming bicharacteristic
to be the negative of that on the outgoing bicharacteristic, and a similar proof ap-
plies to χ−x1 . �

Remark 2.9. With the addition of Lemma 2.8 we could write Proposition 2.7 in
an equivalent form using exp(tHp) in place of χx1 . The important thing is that the
wavefront set does not depend on ξ1.
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WFhf

WFh propagation

γ+

{u− 6= 0}

γ−

{u− = 0}

u− = u+
{x1 = 0}

Figure 4. Proposition 2.7
.

2.3. Microlocal Propagator at the Boundary. We now return to the special
case where Y = ∂X . In the next section we will construct the Quantum Monodromy
operator using the microlocal propagator. Suppose first X is a manifold without
boundary. We define the forward and backward microlocal propagators of P − z,
Iz±(t) = exp(∓it(P − z)/h), by the following evolution equation:

{
hDtI

z
±(t)± (P − z)Iz±(t) = 0

Iz±(0) = id L2→L2 .

In the case of a manifold without boundary, this is a well-defined semigroup satis-
fying [Iz±(t), P − z] = 0 and

WFhI
z
±(t)u ⊂ exp(±tHp)(WFhu).

We will show for P ∈ Diff2,0
h with homogeneous principal symbol on a manifold with

boundary, the microlocal propagator can be extended in a meaningful fashion as a
family of microlocally defined h-FIOs with symbols which depend discontinuously
on t at points of reflection with the boundary, but still carry the commutator and
wavefront set properties above.

Suppose γ reflects off ∂X at the points

m± := (0, x′0,±r
1
2 (0, x′0, ξ

′
0), ξ

′
0),

with the incoming and outgoing rays, γ∓, intersecting ∂X at m∓ respectively.
Since p is assumed smooth up to the boundary, we may extend p and γ− to a
neighbourhood of m− in {x1 ≤ 0}. We will show that functions v(x′) defined on
∂X can be identified with the microlocal kernel of P −z in a neighbourhood of m−.

We factorize P − z as in Lemma 2.1, P − z = (hD1 − Ã+)(hD1− Ã−) microlocally

near m−. Near γ− the operator (hD1 − Ã+) is elliptic. Thus we want to be able
to solve {

(hD1 − Ã−)u = 0, x1 > 0,
u(0, x′) = v(x′), x1 = 0

(2.17)

for any boundary condition v, microlocally near m−. The proof of the following
standard Proposition can be found in [EvZw, Theorem 10.9].
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Proposition 2.10. There is a microlocal solution to (2.17) given by the oscillatory
integral

u(x) =
1

(2πh)n−1

∫
ei/h(ϕ(x,ξ′)−〈y′,ξ′〉)b(x, ξ′)v(y′)dξ′dy′,(2.18)

where b(0, x′, ξ′) = 1 microlocally near (x′0, ξ
′
0) and ϕ solves the eikonal equation

{
∂x1ϕ(x, ξ′)− a(x, ∂x′ϕ(x, ξ′)) = 0, x1 > 0,
ϕ(0, x′, ξ′) = 〈x′, ξ′〉, x1 = 0,

(2.19)

with a = σh(Ã−). Further, u(x) is unique microlocally.

Proposition 2.11. Let X be a manifold with boundary, P ∈ Diff2,0
h,db be a differ-

ential operator with homogeneous principal symbol p, and assume ∂X is nonchar-
acteristic with respect to p. Let U± ⊂ T ∗X be a neighbourhood of m± ∈ T ∗X, and
assume P − z and p − z are factorized near the boundary as in Lemma 2.1 and
equation (2.8) respectively.

(i) For each m0 ∈ γ− ∩U− sufficiently close to m−, and z ∈ [−ε0, ε0] for ε0 > 0
sufficiently small there exist h-FIOs, Iz±(t), defined microlocally near

exp(±tHp)(m0)×m0

satisfying
{
hDtI

z
±(t)± (P − z)(t)Iz±(t) = 0

Iz±(0) = id L2→L2 ,
(2.20)

for t 6= t1, where m− = exp(t1Hp)(m0).
(ii) We have [(P − z)(t), Iz±(t)] = 0 for all t 6= t1 sufficiently small, and if

u(x) ∈ L2 is a microlocal solution to
{

(P − z)u = f ∈ L2, x ∈ X̊,
u = 0, x ∈ ∂X

(2.21)

near m0, then Iz±(t)u(x) is a microlocal solution to (2.21) near exp(±tHp)(m0).
(iii) If WFhu ⊂ K, where K is a compact neighbourhood of a point m0,

WFhI
z
±(t)u ⊂ exp(±tHp)(K).

Proof. Fix m0. According to [EvZw, Theorem 10.18], P − z may be conjugated to
hDx1 in a neighbourhood of m0. Then we use the proof of Proposition 2.4 to find
a solution u−,1 to (P − z)u = f near m0. Use the microlocal forward propagator
defined for a neighbourhood of γ− extended to a neighbourhood of m− to define
u−,1 along γ−. That is, Iz+(t)u−,1 satisfies

(P − z)Iz+(t)u−,1 = f

microlocally near exp(tHp)(m0), 0 ≤ t ≤ t1. Let v−(x′) = I(t1)u−,1|∂X , and use
Proposition 2.10 to find a function u−,2 satisfying

{
(P − z)u−,2 = 0
u−,2|∂X = v−(x′)

microlocally near m−. Let

u− = u−,1 − I
z
+(−t1)u−,2,

so that Iz+(t)u− satisfies (2.21) microlocally near exp(tHp)(m0), 0 ≤ t < t1.
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Fix m2 = exp(t2Hp)(m0) ∈ γ+ sufficiently close to m+ that we can similarly
construct Iz+(t2 − t)u+ satisfying (2.21) microlocally near exp(−tHp)(m2) for 0 ≤
t < t2 − t1. We extend Iz+(t) to be discontinuous at t1, so that if u solves (2.21)
microlocally near m0,

Iz+(t1)u = u− + u+

with

WFhu± ⊂ U± ∩ {x1 ≥ 0}.

We need to verify this extension of Iz+(t) satisfies (i), (ii), and (iii). For 0 ≤ t < t1
this is clear because Iz+(t) is the usual semigroup. At t1, we have

(P − z)Iz+(t1)u = (P − z)(Iz+(t1)u− + Iz+(t2 − t1)u+)

= f− + f+,

with f± = f microlocally near m±. Thus (ii) and (iii) are clear.
For (i), let A = Opwh (a) be a symbol defined microlocally in a neighbourhood of

exp(tHp)(m0). Assume m± /∈WFhA, and let B = Opwh (exp(tHp)
∗a). Then

AIz+(t)u = Iz+(t)Bu

microlocally, and by [EvZw, Theorem 10.7], Iz(t) satisfies 2.20.
The proof for Iz−(t) is similar. �

Corollary 2.12. Let X, P , and p be as in Proposition 2.11. Suppose γ(t) is a
periodic orbit for exp(tHp) of period T which has a finite number of transversal
reflections off ∂X. Then for any m ∈ γ(t), m∩ ∂X = ∅, there exist h-FIOs, Iz±(t),
defined microlocally near exp(tHp)(m)×m for 0 ≤ |t| ≤ T satisfying

(i)
{
hDtI

z
±(t)± (P − z)Iz±(t) = 0

Iz±(0) = id L2→L2

for almost every t.
(ii) [P − z, Iz±(t)] = 0, and if u(x) ∈ L2 satisfies (P − z)u = f ∈ L2 microlocally

near m, then Iz±(t)u(x) satisfies

(P − z)Iz±(t)u(x) = f(x)

microlocally near exp(±tHp)(m).
(iii) If WFhu ⊂ K, where K is a compact neighbourhood of a point m,

WFhI
z
±(t)u ⊂ exp(±tHp)(K).

Proof. This follows immediately from Proposition 2.11 and uniqueness of solutions
to ordinary differential equations. �

3. Quantum Monodromy Construction

In this section, we construct the Quantum Monodromy operator

M(z) : L2(Rn−1)→ L2(Rn−1)

and prove some basic properties. Here we follow [SjZw1] and the somewhat sim-
plified presentation in [SjZw2]. It is classical (see, for example, [AbMa, Theo-
rem 28.5]) that the assumtions on p imply there exists ε0 > 0 such that for
−2ε0 ≤ E ≤ 2ε0 there is a closed semi-hyperbolic orbit in the level set {p = E}.
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Let z ∈ [−ε0, ε0] ⊂ R. Then p−z is the principal symbol of P −z, and p−z admits
a closed semi-hyperbolic orbit in the level set {p− z = 0}, say, γ(z) of period T (z).

We work microlocally in a neighbourhood of

Γ :=
⋃

−ε0≤z≤ε0

γ(z) ⊂ T ∗X.

Fix m0(z) ∈ γ(z), m0(z) ∩ ∂X = ∅, depending smoothly on z, and set m1(z) =
exp( 1

2T (z)Hp)(m0(z)). By perturbing m0(z) and shrinking ε0 > 0 if necessary, we
may assume m1(z)∩∂X = ∅ as well. Assume we are working with a fixed z. Define

kerm0(z)(P − z) = {u ∈ L2(neigh (m0(z))) : (P − z)u = 0

microlocally near m0(z)},

where “neigh (m0(z))” refers to a germ, or a small arbitrary neighbourhood ofm0(z)
which is allowed to change from line to line. Similarly we have

kerm1(z)(P − z) = {u ∈ L2(neigh (m1(z))) : (P − z)u = 0

microlocally near m1(z)}.

We define the forward and backward microlocal propagators Iz± as in Corollary
2.12. Then

Iz+(t) : kerm0(z)(P − z)→ kerexp(tHp)(m0(z))(P − z),

and since

exp(T (z)Hp)(m0(z)) = m0(z)

we define the Absolute Quantum Monodromy operator

M(z) : kerm0(z)(P − z)→ kerm0(z)(P − z)

by

M(z) := I+(T (z)).(3.1)

It is convenient to introduce an inner product structure on kerm0(z)(P − z) (see
[HeSj]). For this, let χ ∈ C∞(T ∗X) be a microlocal cutoff supported near γ(z)
satisfying the following properties (see Figure 6):

χ ≡ 1 on exp(tHp)(m0(z)) for 0 ≤ t ≤
1

2
T (0)(3.2)

χ ≡ 0 on exp(tHp)(m0(z)) for
1

2
T (0) + δ ≤ t ≤ T (0)− δ, δ > 0.(3.3)

Let [P, χ]+ denote the part of the commutator supported near m0(z) where we use
χ to denote both the function and the quantization whenever unambiguous, and
for u, v ∈ kerm0(z)(P − z), define the Quantum Flux product as

〈u, v〉QF :=

〈
i

h
[P, χ]+u, v

〉

L2(neigh (m0(z)))

.

According to [EvZw, Theorem 10.18], there is a neighbourhood of m0(z) and
an h-Fourier integral operator F defined microlocally near m0(0) such that F (P −

z)F−1 = hDx1 on L2(Ṽ ), where Ṽ ⊂ Rn is an open neighbourhood of 0 ∈ Rn.
Then kerm0(z)(P − z) can be identified with L2(V ), where V ⊂ Rn−1 is an open

neighbourhood of 0 ∈ Rn−1. Let

K(z) : L2(V )←→kerm0(z)(P − z)



QUANTUM MONODROMY 19

be the identification, and define the adjoint K(z)∗ with respect to the L2 inner
product on kerm0(z)(P − z). Note

K(z)∗ : kerm0(z)(P − z)←→ L2(V )

is an identification as well. The following two lemmas are from [SjZw1].

Lemma 3.1. The operator

U := K(z)∗
i

h
[P, χ]+K(z) : L2(V )→ L2(V )

is positive definite. Setting K̃(z) = K(z)U
1
2 , we have

K̃(z)∗
i

h
[P, χ]+K̃(z) = id : L2(V )→ L2(V ).

Proof. Using [EvZw, Theorem 10.18], we write
〈
K(z)∗

i

h
[P, χ]+K(z)v, v

〉

L2(V )

= 〈∂x1χK(z)v,K(z)v〉L2(neigh (m0(z)))

≥ C−1‖v‖2.

�

Remark 3.2. In light of Lemma 3.1, we replace K(z) with K̃(z) and write

K(z)−1 = K(z)∗
i

h
[P, χ]+.

Lemma 3.3. The Quantum Flux product 〈·, ·〉QF does not depend on the choice of

χ satisfying (3.2-3.3). In addition, M(z) is unitary on kerm0(z)(P −z) with respect
to this product.

Proof. Suppose u, v ∈ L2(V ) and suppose χ̃ is another function satisfying (3.2-3.3)
which agrees with χ near m1(z). Then [P, χ̃−χ]+ = [P, χ̃−χ], (P − z)K(z)u = 0,
and K(z)∗(P − z) = ((P − z)K(z))∗ imply
〈
i

h
[P, χ̃− χ]+K(z)u,K(z)v

〉
=

〈
i

h
(χ̃− χ)K(z)u, (P − z)K(z)v

〉
= 0.

To seeM(z) is unitary, observe for ũ ∈ kerm0(z)(P − z),〈
i

h
[P, χ]+I

z
+(T (z))ũ, Iz+(T (z))ũ

〉
=

=

〈
i

h

[
P, Iz−(T (z))χIz+(T (z))

]
+
ũ, ũ

〉

=

〈
i

h
[P, χ̃]+ ũ, ũ

〉
,

where χ̃ = exp(THp)
∗χ satisfies (3.2-3.3). �

Next we restrict our attention to L2(V ) by defining the Quantum Monodromy
operator M(z) : L2(V )→ L2(V ) by

M(z) = K(z)−1M(z)K(z).

Lemma 3.4. M(z) : L2(V ) → L2(V ) is unitary, and M(z) is a (microlocally
unitary) quantization of the Poincaré map S.
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Proof. Let u ∈ L2(V ). We calculate:

〈M(z)u,M(z)u〉L2(V ) =

=
〈
K(z)−1M(z)K(z)u,K(z)−1M(z)K(z)u

〉
L2(V )

=
〈
(K(z)∗)−1K(z)−1M(z)K(z)u,M(z)K(z)u

〉
L2(neigh (m0(z)))

=

〈
i

h
[P, χ]+M(z)K(z)u,M(z)K(z)u

〉

L2(neigh (m0(z)))

= 〈K(z)u,K(z)u〉L2(neigh (m0(z)))

= 〈u, u〉L2(V ) .

In order to prove M(z) is the quantization of the Poincaré map, we will use [EvZw,

Theorem 10.7]. We need to prove for pseudodifferential operators A,B ∈ ψ0,0
h (V )

such that σh(B) = S∗σh(A), we have AM(z) = M(z)B. Without loss of generality,
we write x′ = (x2, . . . , xn) ∈ V for the variables in V and x = (x1, x

′) ∈ neigh (γ(z))
for the variables in X near γ. Then for v ∈ L2(V ) ∩ C∞(V )

M(z)B(x′, hDx′)v(x′) =

= K(z)−1M(z)K(z)B(x′, hDx′)v(x′)

= K(z)−1Iz+(T (z))B(x′, hDx′)Iz−(T (z))Iz+(T (z))K(z)v(x′)

= K(z)−1Op
(
(exp(THp))

∗ σh(B)
)
(x, hDx)I

z
+(T (z))K(z)v(x′)

= A(x′, hDx′)M(z)v(x′).

�

4. The Grushin Problem

4.1. Motivation of the Grushin Problem. In this section we follow [SjZw1]
and show how the Quantum Monodromy operator arises naturally in the context
of a Grushin Problem near γ. This is a generalization of the linear algebra Grushin
problem: Suppose

A : H → H,

B : H− → H,

C : H → H+, and

D : H− → H+

are matrices acting on finite dimensional Hilbert spaces H , H−, and H+, and
(
α β
σ δ

)
=

(
A B
C D

)−1

,

where

α : H → H,

β : H+ → H,

σ : H → H−, and

δ : H+ → H−.

Then A is invertible if and only if δ is invertible, in which case

A−1 = α− βδ−1σ.
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It appears counterintuitive at first that understanding the invertibility of a larger
matrix might be easier than understanding the invertibility of a submatrix. How-
ever, when the entries are operators instead of matrices, the situation may change.
In the next section we will see that introducing a matrix of operators will allow us
to understand microlocal invertibility of P −z near a periodic orbit by constructing
a parametrix in the double cover of a neighbourhood of the orbit.

4.2. The Grushin Problem Reduction. Throughout this section, we suppress
the dependence on z whenever unambiguous for ease in exposition. We will build
operators R+ = R+(z) : D′(X) → D′(V ) and R− = R−(z) : D′(V ) → D′(X) such
that

P :=

(
i
h (P − z) R−

R+ 0

)
: D′(X)×D′(V )→ D′(X)×D′(V )

has microlocal inverse

E =

(
E E+

E− E−+

)
(4.1)

near γ × (0, 0), where E, E+, and E− will be defined later, and

E−+ = I −M(z).

The following construction of the solution to the Grushin problem is from [SjZw1],
with the addition here that we allow γ(z) to reflect transversally off the boundary
of ∂X . Recall χ ∈ C∞c (T ∗X) satisfies (3.2-3.3), and begin by setting

R+ = K∗ i

h
[P, χ]+ .

Then if u satisfies (P − z)u = 0 microlocally near m0(z), R+u is the microlocal
Cauchy data. That is, for v ∈ L2(V ), u = Kv is a solution to the microlocal Cauchy
problem

{
(P − z)u = 0,
R+u = v

(4.2)

near γ × (0, 0). To construct a global solution, let Kf (t) := I+(t)K and Kb(t) :=
I−(t)K be the forward and backward (respectively) Cauchy problem solution op-
erators. Note for t ∼ T/2 we have

Kf (t) = I+(t)K

= I−(t)KK−1M(z)K

= Kb(t)M(z),(4.3)

so microlocally nearm1×(0, 0) we haveKf = KbM(z). Now for Ω a neighbourhood
of γ, we can solve (4.2) in Ω \ neigh (m1). To do this, set

E+v = χKfv + (1− χ)Kbv,(4.4)

so E+v satisfies

i) E+v = Kv in a neighbourhood of m0(z)

ii) R+E+ = id microlocally near (0, 0)× (0, 0) ∈ (T ∗V )2.

With [·, ·]− denoting the part of the commutator supported near m1(z), we calcu-
late:

(P − z)E+v = [P, χ]−Kfv − [P, χ]−Kbv,
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u0 = E0v

γ(z)

m0(z)

m1(z)

solution to (4.5)

Figure 5. Microlocal solution to (4.5) and construction of global
solution to (4.6).

sinceKf = Kb microlocally nearm0(z)×(0, 0) and (P−z)I±(t)Kv = 0 microlocally
near exp(tHp)(m0(z))× (0, 0). According to (4.3), we can then write

(P − z)E+v = [P, χ]−Kb(M(z)− id )v.

For v ∈ L2(V ), we set

u = E+v,

u− = E−+v, and

R− =
i

h
[P, χ]−Kb.

We have solved the following problem microlocally in (Ω \ neigh (m1(z)))
2 (see

Figure 5):

{
i
h (P − z)u+R−u− = 0

R+u = v
.(4.5)

Thus if P−1 exists, it is necessarily given by (4.1), where E and E− have yet to
be defined.

For ε > 0 let

(Ω×ε Ω)± :=

{(
⋃

m∈Ω

(exp±tHp)m,m

)
⋂

Ω× Ω : −ε < t < T − 2ε

}
.

We will define Lf and Lb, the forward and backward fundamental solutions (respec-
tively) of i(P − z)/h, which will be defined microlocally on (Ω×ε Ω)± respectively.
By [EvZw, Theorem 10.18], we can conjugate i(P − z)/h to ∂x1 microlocally near
the point m0(z)

2 ∈ (T ∗X)2. Then the local fundamental solutions L0
f and L0

b are
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χ
exp tHp

γ(z)

m0(z)

m1(z)

χb

χf

Figure 6. The cutoffs χb, χ, and χf .

given by

L0
fv(x) =

∫ x1

−∞

v(y, x′)dy, and

L0
bv(x) = −

∫ ∞

x1

v(y, x′)dy,

while Lf and Lb are now given microlocally near exp(±tHp)m0(z)×m0(z), respec-
tively, by

Lf = Iz+(t)L0
f and

Lb = Iz−(t)L0
b .

It is convenient to introduce two new microlocal cutoffs χf and χb satisfying (3.2-
3.3) and in addition,

χ ≡ 1 on suppχf ∩W+,

χb ≡ 1 on suppχ ∩W+,

whereW+ is a neighbourhood ofm0(z) containing the support of [P, χ]+ (see Figure
6). For v ∈ L2(Ω), set

ũ = Lf (I − χ)v,

and observe (P −z)ũ = 0 past the support of (I−χ) in the direction of the Hp flow.
In particular, (P − z)ũ = 0 on suppχf . Then past supp (I − χ) in the direction of
the Hp flow,

ũ = KK∗ i

h
[P, χf ]+ ũ

= KK∗ i

h
[P, χf ]+ Lf (I − χ)v.

Let Ĩ+(t) be the extension of I+(t) to T ≤ t ≤ 2T − ε, and let K̃f = Ĩ+K. Let Ω̃

denote the double covering space of Ω. Then in Ω̃,

ũ = K̃fK
∗ i

h
[P, χf ]+ Lf (I − χ)v.

We define û = Lbχv and K̃b = Ĩ−K similar to K̃f so that

û = K̃bK
∗ i

h
[P, χb]+ Lbχv.
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We think of ũ and û as being double-valued on Ω and write Lffv and Lbbv to denote
the second branches respectively in a neighbourhood of m1(z). Let W− denote a
neighbourhood of m1(z), and define (see Figure 5)

u0 = E0v :=

{
Lbχv + Lf (I − χ)v outside W−,
Lbχv + (I − χ)Lbbχv + Lf (I − χ)v + χLff (I − χ)v in W−

.

Now we apply i(P − z)/h to E0v in W−:

i

h
(P − z)E0v = v −

i

h
[P, χ]− Lbbχv +

i

h
[P, χ]− Lff (I − χ)v

= v −
i

h
[P, χ]−KbK

∗ i

h
[P, χ]+ Lbχv

+
i

h
[P, χ]−KfK

∗ i

h
[P, χ]+ Lf (I − χ)v

= v −
i

h
[P, χ]−Kb

(
K∗ i

h
[P, χ]+ Lbχv

−M(z)K∗ i

h
[P, χ]+ Lf (I − χ)v

)
,

where we have used Kf = KbM(z) in W− and dropped the tilde and hat notation
when thinking of second branches. We have solved the following problem:

i

h
(P − z)E0v +R−E0,−v = v,(4.6)

with

R− =
i

h
[P, χ]−Kb

as above, and

E0,−v := K∗ i

h
[P, χ]+ Lbχv −M(z)K∗ i

h
[P, χ]+ (I − χ)v.

Recalling the structure of E and P , we calculate

PE =

(
i
h (P − z)E +R−E−

i
h(P − z)E+ +R−E−+

R+E R+E+

)
,

so that if E is to be a microlocal right inverse of P near γ × (0, 0), we require

i

h
(P − z)E +R−E− = id : L2(Ω)→ L2(Ω),(4.7)

i

h
(P − z)E+ +R−E−+ = 0 : L2(V )→ L2(Ω),(4.8)

R+E = 0 : L2(Ω)→ L2(V ) and,(4.9)

R+E+ = id : L2(V )→ L2(V )(4.10)

microlocally. Note (4.8) and (4.10) are satisfied according to (4.5). Owing to (4.10),

if we write E = (I −E+R+)Ẽ for some Ẽ, then

R+E = R+(I −E+R+)Ẽ = (I −R+E+)R+Ẽ = 0,

and comparing with (4.7) we see Ẽ = E0,

E = E0 +E+R+E0,

and

E− = E0,− −E−+R+E0.
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Thus E is a right inverse. To see it is also a left inverse, observe

R∗
+ =

i

h
[P, χ]+K, and

R∗
− = K∗

b

i

h
[P, χ]− ,

together with

K∗
b

i

h
[P, χ]−Kb = − id

implies

K∗
b

i

h
[P, (I − χ)]−Kb = id .

In other words, after exchanging χ with 1− χ, W+ with W−, and K with Kb, R
∗
+

has the same form as R− and R∗
− has the same form as R+. Thus

P∗ =

(
i
h (P − z) R∗

+

R∗
− 0

)

has the same form as P and hence has a microlocal right inverse, say

F∗ :=

(
F F+

F− F−+

)∗

Then P∗F∗ = id implies FP = id , so

F = FPE = E

implies F = E .
As every operator used in the preceding construction depends holomorphically

on z ∈ [−ε0, ε0] + i(−c0h, c0h), we have proved the following Proposition, which is
from [SjZw1]:

Proposition 4.1. With P and E as above and z ∈ [−ε0, ε0] + i(−c0h, c0h), E is a
microlocal inverse for

P : L2(Ω)× L2(V )→ L2(Ω)× L2(V )

near γ ⊂ T ∗X, and in addition,

‖E‖L2(Ω)×L2(V )→L2(Ω)×L2(V ) ≤ C.

4.3. Comparing P − z to M(z). As a consequence of Proposition 4.1 and mo-
tivated by the linear algebra Grushin problem, the following two theorems show
quantitatively that P − z is invertible if and only if I −M(z) is invertible.

Theorem 4. Let M(z) : L2(V ) → L2(V ) be the Quantum Monodromy operator,

(P − z) and R+ as above. Suppose A ∈ Ψ0,0
h (T ∗X) is a microlocal cutoff with

wavefront set sufficiently close to γ ⊂ T ∗X and B ∈ Ψ0,0
h (T ∗V ) is a microlocal

cutoff with wavefront set sufficiently close to (0, 0) ∈ T ∗V . Then there exists ε0 > 0,
c0 > 0, and h0 > 0 such that, with z ∈ [−ε0, ε0] + i(−c0h, c0h) and 0 < h < h0,

‖(P − z)u‖L2(X) ≥

≥ C−1h
(
‖B(I −M(z))R+u‖L2(V ) − ‖(I −A)u‖L2(X)

)
(4.11)

−O(h∞)‖u‖L2(X).
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Further,

‖Au‖L2(X) ≤

≤ C
(
‖R+u‖L2(V ) + h−1 ‖(P − z)u‖L2(X) + ‖(I −A)u‖L2(X)

)
(4.12)

+O(h∞)‖u‖L2(X).

Proof. That E is a microlocal left inverse for P means in particular that for A and
B as in the statement of the theorem,

i

h
E−(P − z) +E−+R+ = l+ +O(h∞)L2(X)→L2(V ),(4.13)

where

Bl+A = O(h∞)L2(X)→L2(V ).

Since (4.11) is only concerned with injectivity, we note that by replacing E− and

E−+ with Ẽ− = BE− and Ẽ−+ = BE−+ respectively in (4.13) doesn’t change the
fact that E is a microlocal left inverse. Thus

i

h
Ẽ−(P − z) + Ẽ−+R+ = l̃+ +O(h∞)L2(X)→L2(V ),(4.14)

with

l̃+A := Bl+A = O(h∞)L2(X)→L2(V ),

and for u ∈ L2(X),

Ẽ−(P − z)u+
h

i
Ẽ−+R+u =

h

i
l̃+(I − A)u+O(h∞)‖u‖L2(X),

hence (4.11).
For (4.12), we note EP = id microlocally gives also

i

h
E(P − z) +E+R+ = id L2(X))→L2(X) + l,(4.15)

where

AlA = O(h∞)L2(X)→L2(X).

Similar to (4.14), we replace E and E+ with Ẽ = AE and Ẽ+ = AE+ without
changing that E is a microlocal left inverse of P , and from (4.15), we get for u ∈
L2(X)

i

h
Ẽ(P − z)u+ Ẽ+R+u = Au+ l̃u+O(h∞)‖u‖L2(X),

Using l̃Au := AlAu = O(h∞)u, we get

C
(
‖(P − z)u‖L2(X) + h‖R+u‖L2(V )

)
≥ h‖Au‖L2(X) − h‖(I −A)u‖L2(X),

which is (4.12). �

Using that E is a microlocal right inverse for P we obtain the following theorem,
which completes the correspondence between I −M(z) and P − z.
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Theorem 5. Suppose A ∈ Ψ0,0(X), B ∈ Ψ0,0(V ) satisfy

A ≡ 1 microlocally near γ,

A ≡ 0 microlocally away from γ,

B ≡ 1 microlocally near (0, 0),

B ≡ 0 microlocally away from (0, 0).

Suppose u ∈ L2(X) satisfies

Au = u+O(h∞)‖u‖L2(X),

and v ∈ L2(V ) satisfies

Bv = v +O(h∞)‖v‖L2(V ).

Then we have

A
i

h
(P − z)Eu+AR−E−u = u+O(h∞)‖u‖L2(X), and(4.16)

A
i

h
(P − z)E+v +AR−(I −M(z))v = O(h∞)‖v‖L2(V ).(4.17)

Remark 4.2. The utility of (4.17) is that in §9, where γ will be assumed ellip-
tic instead of semi-hyperbolic, we construct v ∈ L2(V ) concentrated near (0, 0)
satisfying

(I −M(z))v = O(hN ), ∀N

then u := E+v satisfies

(P − z)u = O(hN+1)‖u‖L2(X)

microlocally near γ. This provides essentially a converse to our Main Theorem.

Proof of Theorem 5. From Proposition 4.1, if we multiply P by E on the right, we
get

i

h
(P − z)E + R−E− = id L2(X)→L2(X) + r,(4.18)

i

h
(P − z)E+ +R−(I −M(z)) = r−,(4.19)

R+E = r+,

R+E+ = id L2(V )→L2(V ) + r−+,

where

ArA = O(h∞)L2(X)→L2(X),

Ar−B = O(h∞)L2(V )→L2(X),

Br+A = O(h∞)L2(X)→2(V ), and

Br−+B = O(h∞)L2(V )→L2(V ).

Hence (4.18-4.19) imply for any u ∈ L2(X), v ∈ L2(V ),

A
i

h
(P − z)Eu+ AR−E−u = Au+Ar(I −A)u+O(h∞)‖u‖L2(X)

and

A
i

h
(P − z)E+v +AR−(I −M(z))v = Ar−(I −B)v +O(h∞)‖v‖L2(V ),

which is (4.16-4.17). �
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5. The Model Case

In this section we indicate how Theorem 4 can be used to estimate P − z in the
model case. Let dimX = 2, and assume t parametrizes γ = γ(0), and τ is the dual
variable to t. Then our model for p near γ is the symbol

p = τ + λxξ,

with λ > 0. We have

Hp = ∂t + λ(x∂x − ξ∂ξ),

and the Poincaré map S : R2 → R2 is given by

S =

(
eλ 0
0 e−λ

)
.

We want a deformation of the identity into S, that is a smooth family of sym-
plectomorphisms κt such that κ0 = id and κ1 = S. This is clear in the model
case:

κt = exp t

(
λ 0
0 −λ

)
.

According to [EvZw, Theorem 10.1], we can find a time-dependent effective Hamil-
tonian qt = qt(x, ξ) such that

d

dt
κt = (κt)∗Hqt .

In the model case, this is again clear: qt = λxξ, independent of t.
We know in general if M(z) is the Quantum Monodromy operator it is an h-FIO

associated to the graph of S, which means our model is M(z) = M z(1) for Mz(t)
a family of h-FIOs satisfying

{
hDtM

z(t) +Q(t)Mz(t) = 0,
Mz(0) = id

where Q(t) = Op (qt) for the effective Hamiltonian qt as above. In the model case,
q does not depend on t or z, so with Q = Op (q), M z(t) is just the semigroup

M(t) = exp

(
−
i

h
tQ

)
.

The basic idea is M(t) is unitary, but e−G
w

M(t)eG
w

is not for G with real
principal symbol (if it exists). Further, in the model case, if G is independent of t,

e−G
w

M(t)eG
w

= exp

(
−
i

h
te−G

w

QeG
w

)
,

and it will suffice to show e−G
w

QeG
w

has an imaginary part of fixed size comparable
to h.

As in [Chr1, Lemma 2.4], for u ∈ L2(Rn) we define Th,h̃ by

Th,h̃u(X) :=
(
h/h̃

)n
4

u

((
h/h̃

) 1
2

X

)
.(5.1)
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We then conjugate M(t) to M1(t) = Th,h̃M(t)T−1

h,h̃
, and observe M1(t) satisfies the

evolution equation

hDtM1(t) = −Th,h̃QM(t)T−1

h,h̃
(5.2)

= −Th,h̃QT
−1

h,h̃
Th,h̃M(t)T−1

h,h̃
(5.3)

= −Q1M1(t),(5.4)

where

Q1 = Th,h̃QT
−1

h,h̃
∈ Ψ−∞,0,0

− 1
2

microlocally. We write q1(X,Ξ) = σh̃(Q1), where

q1(X,Ξ) = λ
(
h/h̃

)
XΞ +O(h2 + h̃2),

as in [Chr1, Lemma 2.4].
Now we define the escape function

G(X,Ξ) =
1

2
log

(
1 +X2

1 + Ξ2

)
,

and according to a result of Bony-Chemin [BoCh] (see also [Chr1, Lemma 2.1]), we
can form the family of operators

esG
w

,

where Gw is the Weyl quantization of G in the h̃ calculus and |s| is sufficiently
small. Let

M̃(t) = e−sG
w

M1(t)e
sGw ,

whence

hDtM̃(t) = −Q̃M̃(t)

for

Q̃ = e−sG
w

Q1e
sGw

by a similar argument to (5.2-5.4). We write

Q̃ = exp(−sadGw)Q1,

with

ad kGwQ1 = OL2→L2

(
hh̃k−1

)
,

and

[Q1, G
w] = −ih̃Opw

h̃
(Hq1G) +O(h3/2h̃3/2).

We have

Hq1G = λ
(
h/h̃

)( X2

1 +X2
+

Ξ2

1 + Ξ2

)

=: λ
(
h/h̃

)
A,

so that

Q̃ = Q1 − ishOpw
h̃

(A) + sEw1 + s2Ew2 ,
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with E1 = O(h3/2h̃3/2) and E2 = O(hh̃). Since A is roughly the harmonic oscillator
(see [Chr1, Lemma 5.1]),

〈Opw
h̃

(A)U,U〉 ≥
h̃

C
‖U‖2

independently of h, so that

Im
〈
Q̃U, U

〉
≤ −

hh̃

C
‖U‖2.(5.5)

Thus with h̃ > 0 small but fixed,

M̃(1) = exp

(
−
i

h
( Re Q̃+ i Im Q̃)

)

and by (5.5),
∥∥∥M̃(1)

∥∥∥
L2(R)→L2(R)

≤ r < 1.(5.6)

For u ∈ L2(R) and U = Th,h̃u, we have by (5.5) and (5.6)

Re
〈
(I − M̃(1))U,U

〉
≥ C−1‖U‖2

for some 0 < C <∞. Define the operator Kw by

esK
w

= T−1

h,h̃
esG

w

Th,h̃.(5.7)

We have shown that

Re
〈
e−sK

w

(I −M)esK
w

u, u
〉
≥ C−1‖u‖2.

Since ‖ exp(±sKw)‖L2→L2 = O(h−N ) for some N , we have

Re 〈(I −M)u, u〉 ≥ ChN‖u‖2.

6. The Linearization

6.1. Symplectic Linear Algebra and Matrix Logarithms. In this section, we
will show how to reduce the case of a general Poincaré map with a fixed point to
studying the quadratic Birkhoff normal forms. We assume as in the introduction
that the eigenvalues of modulus one obey the nonresonance assumption (1.2).

We begin by tackling the problem of negative real eigenvalues and eigenvalues of
modulus 1 of the linearized Poincaré map. Let S : W1 → W2, W1,W2 ⊂ R2n−2, be a
local symplectic map, S(0, 0) = (0, 0), which we have identified with its coordinate
representation. As in the proof of [EvZw, Theorem 10.1], we consider the polar
decomposition of dS(0, 0):

dS(0, 0) = exp(−JF ) exp(B),

with F and B real valued and exp(B) positive definite and symplectic. Specifically,
exp(−JF ) describes the action due to the eigenvalues of modulus 1 as well as the
rotation inherent in the negative real eigenvalues. We consider first A = exp(B).
We denote by {µj} the eigenvalues of A and by {µ̃j} the eigenvalues of dS(0, 0).
Let µ be an eigenvalue of A. Then A symplectic implies if µ > 1 is real µ−1 is also
an eigenvalue, and if µ is complex, |µ| > 1, µ−1, µ, and µ−1 are also eigenvalues. If
µ̃, |µ̃| = 1 is an eigenvalue of dS(0, 0), then µ̃ = µ−1 is also an eigenvalue dS(0, 0),

but we will see neither of these contributes to A. If Ẽµ is the generalized complex
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eigenspace of µ, then we can put A into complex Jordan form over Ẽµ. To keep

the change of variables symplectic, we observe that Ẽµ−1 is the dual eigenspace to

Ẽµ, so if

Aµ := A|Ẽµ =




µ 1 0 . . . . . .
0 µ 1 0 . . .
...

. . .
. . . . . . . . .

0 . . . 0 µ 1
0 . . . . . . . . . . . µ



,

then symplectically completing this basis in Ẽµ ⊕ Ẽµ−1 gives

A|Ẽµ−1
=
(
ATµ
)−1

.

As Aµ = µI +Nµ with Nµ nilpotent, by expanding
(
ATµ
)−1

as a power series, we
see

Aµ−1 := A|Ẽµ−1
= µ−1I +Nµ−1

with Nµ−1 nilpotent. We choose a branch of logarithm so that

λ(µ) = log(µ)

satisfies

λ(µ−1) = −λ(µ), and(6.1)

λ(µ) = λ(µ),(6.2)

and observe for N nilpotent,

log(I +N) = N −
N2

2
+
N3

3
+ . . .

is a finite series. Then we can define

log(µI +Nµ) = λ(µ) +Nλ,

with Nλ nilpotent.
We apply this technique to each generalized eigenspace of A to obtain a complex

matrix

B̃ := logA.

We see B̃ is block diagonal with diagonal elements of the form λI + Nλ with Nλ
nilpotent. We know |µ| > 1 real gives Reλ(µ) > 0. For λ satisfying Reλ > 0, let

Eλ denote the generalized complex eigenspace of λ with respect to B̃, and let Ẽµ̃
denote the generalized complex eigenspace of µ̃ with respect to dS(0, 0). There are
4 cases to consider.

Case 1: µ̃ > 1 is real, and an eigenvalue of dS(0, 0). Then Eλ ⊕ E−λ is a

real symplectic space which is equal to Ẽµ̃ ⊕ Ẽµ̃−1 . If we put B̃ into Jordan form
over Eλ,

B̃λ := B̃
∣∣∣
Eλ

=




λ 1 0 . . . . . .
0 λ 1 0 . . .
...

. . .
. . . . . . . . .

0 . . . 0 λ 1
0 . . . . . . . . . . . λ



,
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completing the basis symplectically over Eλ ⊕E−λ gives

B̃
∣∣∣
E−λ

= −
(
B̃λ

)T
.

As µ = µ̃ was an eigenvalue of A,

exp(−JF )|Ẽµ̃⊕Ẽµ̃−1
= id .

Case 2: µ̃ is complex, |µ̃| > 1, and µ̃ is an eigenvalue of dS(0, 0). Then
Eλ⊕E−λ⊕Eλ̄⊕E−λ̄ is the complexification of a real symplectic vector space which

is equal to Ẽµ̃ ⊕ Ẽµ̃−1 ⊕ Ẽµ̃ ⊕ Ẽµ̃−1 . Changing variables as in [Chr1] §6, we see

B̃
∣∣∣
Eλ⊕E−λ⊕Eλ̄⊕E−λ̄

=


 B̃λ 0

0 −
(
B̃λ

)T


 ,

where

B̃λ =




Λ I 0 . . . . . .
0 Λ I 0 . . .
...

. . .
. . . . . . . . .

0 . . . 0 Λ I
0 . . . . . . . . . . . Λ



,

with I the 2× 2 identity matrix and

Λ =

(
Reλ − Imλ
Imλ Reλ

)
.

Further,

exp(−JF )|Ẽµ̃⊕Ẽµ̃−1⊕Ẽµ̃⊕Ẽµ̃−1
= id .

Case 3: µ > 1 is real, and µ̃ = −µ is an eigenvalue of dS(0, 0). Then

Eλ ⊕E−λ is a real symplectic vector space, equal to Ẽµ̃ ⊕ Ẽµ̃−1 and B̃ is handled
as in Case 1, with the important difference:

exp(−JF )|Ẽµ̃⊕Ẽµ̃−1
= − id .

Case 4: |µ̃| = 1, Im µ̃ > 0 is an eigenvalue of dS(0, 0). Then Eλ ⊕E−λ is a
complex symplectic vector space which is the complexification of a real symplectic
vector space which is equal to Ẽµ̃ ⊕ Ẽµ̃−1 . Since we have assumed in particular
that µ̃ occurs with multiplicity 1, so does λ. Write λ = iα, α > 0, in which case we
observe

F |Eiα⊕E−iα
=

(
α 0
0 α

)

is diagonal since µ̃ is distinct.
We have proved the following proposition, which we record in detail to fix our

notation.

Proposition 6.1. Let S : W1 → W2, W1,W2 ⊂ R2n−2 be a local symplectic map,
S(0, 0) = (0, 0), and let nhc be the number of Jordan blocks of complex eigenvalues
µ of dS(0, 0) satisfying |µ| > 1, Reµ > 1, and Imµ > 0; nhr+ be the number of
Jordan blocks of real positive eigenvalues µ of dS(0, 0) satisfying µ > 1; nhr− be
the number of Jordan blocks of negative real eigenvalues −µ of dS(0, 0) satisfying
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−µ < −1; and ne be the number of eigenvalues µ of modulus 1 satisfying Imµ > 0.
For

j ∈ (1, . . . , nhc; 2nhc + 1, . . . , 2nhc + nhr+;(6.3)

2nhc + nhr+ + 1, . . . , 2nhc + nhr+ + nhr−;(6.4)

2nhc + nhr+ + nhr− + 1, . . . , 2nhc + nhr+ + nhr− + ne)(6.5)

let kj denote the multiplicity of µj so that

2n− 2 =

4



nhc∑

j=1

kj


+ 2




2nhc+nhr+∑

j=2nhc+1

kj


+ 2




2nhc+nhr++nhr−∑

2nhc+nhr++1

kj




+2




2nhc+nhr++nhr−+ne∑

2nhc+nhr++nhr−+1

kj


 .

Choose λj(µj) = logµj satisfying (6.1-6.2) for j in the range (6.3) and (6.5), and
for j in the range (6.4), choose λj(µj) = log(−µj) satisfying (6.1-6.2). Then there
are real matrices B and F satisfying ωB = −B, F ∗ = F , and a symplectic choice
of coordinates such that

dS(0, 0) = exp(−JF ) exp(B),

and B is of the form

B = diag
(
Bj ;−B

T
j

)
,

for j in the range (6.3-6.5). For j ∈ (1, . . . nhc), Bj is the 2kj × 2kj matrix

Bj =




Λj I 0 . . . . . . .
0 Λj I 0 . . .
...

. . .
. . . . . . . . . .

0 . . . 0 Λj I
0 . . . . . . . . . . . . Λj



,(6.6)

with I the 2× 2 identity matrix and

Λj =

(
Reλj − Imλj
Imλj Reλj

)
.

For j ∈ (2nhc + 1, . . . 2nhc + nhr+ + nhr−), Bj is the kj × kj matrix

Bj =




λj 1 0 . . . . . . .
0 λj 1 0 . . .
...

. . .
. . . . . . . . . .

0 . . . 0 λj 1
0 . . . . . . . . . . . . λj



,(6.7)

and for j ∈ (2nhc +nhr+ + nhr− + 1, . . . , 2nhc + nhr+ +nhr− + ne), Bj is the 1× 1
matrix 0. Here

F = diag (Fj ;Fj) ,
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for j in the range (6.3-6.5), where for j ∈ (1, . . . , 2nhc), F is the 2kj × 2kj zero
matrix, for j ∈ (2nhc + 1, . . . , 2nhc + nhr+), Fj is the kj × kj zero matrix, for
j ∈ (2nhc + nhr+ + 1, . . . 2nhc + nhr+ + nhr−),

Fj = πI,

where I is the kj×kj identity matrix, and for j ∈ (2nhc+nhr++nhr−+1, . . . , 2nhc+
nhr+ + nhr− + ne), Fj = Imλj .

Following the proof of [EvZw, Theorem 10.1], we set

K1
t = exp(−tJF ) and Kt = exp(tB),

which we observe is the same as

K1
t = exp(tHq1) and Kt = exp(tHq)

for

q(x, ξ) =

=

nhc∑

j=1

kj∑

l=1

( Reλj (x2l−1ξ2l−1 + x2lξ2l)− Imλj (x2l−1ξ2l − x2lξ2l−1))(6.8)

+

nhc∑

j=1

kj−1∑

l=1

(x2l+1ξ2l−1 + x2l+2ξ2l)(6.9)

+

2nhc+nhr++nhr−∑

j=2nhc+1




kj∑

l=1

λjxlξl +

kj−1∑

l=1

xl+1ξl


 ,(6.10)

and

q1(x, ξ) =
2nhc+nhr++nhr−∑

j=2nhc+nhr++1

π

2
(x2
j + ξ2j ) +

2nhc+nhr++nhr−+ne∑

j=2nhc+nhr++nhr−+1

Imλj
2

(x2
j + ξ2j ).(6.11)

6.2. Geometry of the Poincaré Section. The previous section motivates the
next proposition. First we need the following lemma, which follows from the more
general [Chr1, Lemma 4.2]. Recall under the assumption that S is hyperbolic, the
stable and unstable manifolds Λ∓ ⊂ N for S are n−1-dimensional locally embedded
transversal Lagrangian submanifolds (see [HaKa, Theorem 6.2.3]).

Lemma 6.2. Let S : W1 → W2, W1,W2 ⊂ R2n−2, S(0, 0) = (0, 0), be a local
hyperbolic symplectic map with unstable/stable manifolds Λ±. Then there exists
a local symplectic coordinate system (x, ξ) near γ such that Λ+ = {ξ = 0} and
Λ− = {x = 0}.

For the following proposition, we assume there are no negative real eigenvalues
and no eigenvalues of modulus 1 to the linearized Poincaré map. Later we will
modify the general Poincaré map to be of this form. This follows from the proof of
[Chr1, Proposition 4.3].

Proposition 6.3. Let S : W1 → W2, W1,W2 ⊂ R2n−2, be a local hyperbolic sym-
plectic map, S(0, 0) = (0, 0), and assume dS(0, 0) has no negative real eigenvalues.
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There is a smooth family of local symplectomorphisms κt, a smooth, real-valued
matrix function Bt(x, ξ), and a symplectic choice of coordinates in which

(i) κ0 = id , κ1(x, ξ) = S(x, ξ);

(ii)
d

dt
κt = (κt)∗Hqt ,(6.12)

where

qt(x, ξ) = 〈Bt(x, ξ)x, ξ〉 .(6.13)

Here

〈Bt(0, 0)x, ξ〉 = q(x, ξ),(6.14)

for q(x, ξ) of the form (6.8-6.10).

7. The Proof of Theorem 1

7.1. Motivation. We recall from Theorem 4 that if u ∈ L2(X) has wavefront set
sufficiently close to γ and B ∈ Ψ0,0(V ) is a microlocal cutoff near (0, 0), we have
for z ∈ [−ε0, ε0] + i(−c0h, c0h),

‖(P − z)u‖L2(X) ≥ C
−1h ‖B(I −M(z))R+u‖L2(V ) .

Hence we want to show M(z) has spectrum away from 1. This is the content of the
following Theorem, which we state in its general form for reference.

Theorem 6. Let Ṽ ⊂ R2m be an open neighbourhood of (0, 0), and assume κz :

neigh (Ṽ ) → κz(neigh (Ṽ )), κz(0, 0) = (0, 0), z ∈ (−δ, δ), δ > 0 is a smooth family
of symplectomorphisms such that dκz(0, 0) is semi-hyperbolic and the nonresonance
condition (1.2) holds for dκz(0, 0). Let M(z) be the microlocally unitary h-FIO
which quantizes κz as in [EvZw, Theorem 10.3]. Then for z ∈ (−δ′, δ′), δ′ > 0
sufficiently small and s ∈ R sufficiently close to 0, there exist self-adjoint, semi-
classically tempered operators exp(±sKw) so that for v ∈ L2(Rm) with h-wavefront
set sufficiently close to (0, 0),

∥∥∥e−sK
w

M(z)esK
w

v
∥∥∥
L2
≤

1

R
‖v‖L2 .(7.1)

From §3, we know M(z) is an h-FIO associated to the graph of S(z), where S(z)
is the Poincaré map for γz, the periodic orbit in the energy level z. Suppose for
the moment that S(z) satisfies the hypotheses of Proposition 6.3, and let qz,t be
qt as in the conclusion of the Proposition, where now qz,t varies over energy levels
z near 0. Setting Qz,t = Opwh (qz,t), by modifying the proofs of [EvZw, Theorems

10.3, 10.7], there exists Mz,0 ∈ Ψ0,0
h microlocally unitary so that M(z) = M z(1)

for Mz(t) a family of operators satisfying the evolution equations

hDtM
z +MzQz,t = 0, 0 ≤ t ≤ 1,

Mz(0) = Mz,0.

In order to prove Theorem 6, we observe if W (z) : L2(V ) → L2(V ) is the

microlocal inverse for M(z), we have also Wz,0 ∈ Ψ0,0
h microlocally unitary so that

W (z) = W z(1) for W z(t) satisfying the following evolution equation:

hDtW
z −Qz,tW

z = 0, 0 ≤ t ≤ 1,(7.2)

W z(0) = Wz,0.(7.3)
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The rest of this section is devoted to proving there exist semiclassically tempered
operators exp(±sKw) as in the statement of the Theorem so that

∥∥∥e−sK
w

W (z)esK
w

v
∥∥∥
L2(V )

≥ R‖v‖L2(V )(7.4)

for some R > 1. Then

‖v‖L2(V ) =
∥∥∥e−sK

w

W (z)esK
w

e−sK
w

M(z)esK
w

v
∥∥∥
L2(V )

≥ R
∥∥∥e−sK

w

M(z)esK
w

v
∥∥∥
L2(V )

,

which gives the Theorem once we prove (7.4).
In order to get Theorem 1 from Theorem 6, we observe by (7.1) we have also

∥∥∥
(
I − e−sK

w

M(z)esK
w
)
v
∥∥∥ ≥ C−1‖v‖.

Thus

Re
〈
e−sK

w

(I −M)esK
w

v, v
〉

= ‖v‖2 − Re
〈
e−sK

w

M(z)esK
w

v, v
〉

≥ C−1‖v‖2L2(V ).

Since ‖ exp(±sKw)‖L2→L2 = O(h−N ) for some N , we have

Re 〈(I −M(z))v, v〉 ≥ ChN‖v‖2.

Now let u ∈ L2(X) have wavefront set close to γ. Set v = R+u so that WFhv
is close to (0, 0), and observe with B as in Theorem 4 and b = σh(B), 1 − b has
support away from (0, 0) ∈ T ∗Rn−1. Then

Opwh (1− b)M(z)v = M(z)Opwh (S(z)∗(1− b))v = O(h∞),

so that if WFhu is sufficiently small,

B(I −M(z))R+u = (I −M(z))R+u

microlocally, and (4.12) gives the theorem.
�

Our biggest tool so far is the normal form deformation in Proposition 6.3, how-
ever we cannot immediately apply it to S(z) satisfying the assumptions of the
introduction. To get by this we will transform S(z) into a hyperbolic map satisfy-
ing the assumptions of Proposition 6.3 and then later deal with the errors which
come up when transforming back.

The proof of Theorem 6 will proceed in 4 basic steps. First, we deform the
effective Hamiltonian into a sum of two Hamiltonians with disjoint support in t, one
hyperbolic and one elliptic. The summed Hamiltonian will be called qz,t. We then
modify the evolution equation defining W z to an equation involving a conjugated

version of W z, W̃ (t). This evolution equation will be given in terms of a conjugated

quantization of qz,t, Q̃z,t, that we will then need to estimate from below. This step
is a variation on the classical idea of a “positive commutator”. That is, Op w

h (qz,t)

is self-adjoint, but if we conjugate it with an operator of the form eG
w

, we get
Opwh (qz,t) plus a lower order skew-adjoint commutator. The principal symbol of
the commutator [G,Op(qz,t)] is hiHqz,tG. The linear part of Hqz,t is block diagonal
in the hyperbolic and elliptic variables, but the nonlinear part potentially forces
interaction between the hyperbolic and elliptic variables. Hence we will be forced
to introduce a complex weight G to gain some orthogonality between the hyperbolic
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Figure 7. The cutoff functions ψ1, ψ2, ψ, and χ.

and elliptic variables. This is accomplished in Step 3. Finally we will estimate M ,

whose inverse is related to W̃ by conjugation.

7.2. Step 1: Deform qz,t. We construct a rescaled deformation of identity into
S(z) in which the elliptic part of the effective Hamiltonian has disjoint support in
t from the support of the non-elliptic part.

We will be using four cutoff functions,

ψ1(t), ψ2(t), ψ(t), and χ(t) : [0, 1]→ [0, 1]

satisfying the following properties (see Figure 7):

(i) ψ1(0) = ψ2(0) = ψ(0) = χ(0) = 0, ψ1(1) = ψ2(1) = ψ(1) = χ(1) = 1;

(ii) ψ′
1, ψ

′, and χ′ are all non-negative,

(iii) suppψ′
1 ⊂ [0, 1/4], suppχ′ ⊂ [1/4, 1/2],

suppψ′ ⊂ [1/2, 3/4], and suppψ′ ⊂ [3/4, 1].

Motivated by Proposition 6.3, we construct a family of symplectomorphisms,
κz,t, satisfying κz,0 = id and κz,1 = S(z), but the elliptic part has disjoint support
in t from the hyperbolic part. That is, let F be given as in Proposition 6.1, and let

E(z) = exp(−JF (z)), K1
t = exp(−tJF (z)),
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so that K1
0 = id , K1

1 = E(z), and

d

dt
K1
t = (K1

t )∗Hq1 ,

where q1 is given by (6.11). Here the coefficients
Imλj

2 implicitly depend on z, but
the dimensions of the eigenspaces are constant for z in a neighbourhood of 0. Let

K̃1
t be defined by

K̃1
t = K1

ψ1(t)
,

so that K̃1
0 = id , K̃1

1 = E(z), and the chain rule then gives

d

dt
K̃1
t = ψ′

1(t)
d

dτ
K1
τ |τ=ψ1(t)

= ψ′
1(t)(K

1
τ )∗Hq1 |τ=ψ1(t)

= (K̃1
t )∗Hψ′

1(t)q
1 .

We introduce an “artificial hyperbolic” transformation which will temporarily
replace the elliptic part by setting

qah =

2hhc+nhr++nhr−+ne∑

j=2hhc+nhr++nhr−+1

2xjξj ,

defining Kah = exp(Hqah ), and

S̃(z) = K−1
ah ◦E(z)−1 ◦ S(z),

so that S̃(z) satisfies the assumptions of Proposition 6.3 near z = 0. From Propo-

sition 6.3, there is a family κ1
z,t satisfying κ1

z,0 = id , κ1
z,1 = S̃(z), and

d

dt
κ1
z,t = (κ1

z,t)∗Hq̃z,t ,

where now

q̃z,t = 〈Bz,t(x, ξ)x, ξ〉

for Bz,t satisfying (6.14). Let

κ̃z,t = κ1
z,ψ(t),

so that κ̃z,0 = id , κ̃z,1 = S̃(z), and

d

dt
κ̃z,t = ψ′(t)

d

dτ
κ1
z,τ |τ=ψ(t)

= ψ′(t)(κ1
z,τ )∗Hq̃z,τ |τ=ψ(t)

= (κ̃z,t)∗Hψ′(t)q̃z,ψ(t)
.

Let K2
t = exp(tHqah) and K̃2

t = K2
ψ2(t)

, so that K̃2
0 = id , K̃2

1 = Kah, and

d

dt
K̃2
t = (K̃2

t )∗Hψ′

2(t)qah
.

Finally, let

κz,t = K̃1
t ◦ K̃

2
t ◦ κ̃z,t.
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Unraveling the definitions, we have κz,t satisfying

(i) κz,0 = id , κz,1 = S(z);

(ii) κz,t =





K̃1
t , 0 ≤ t ≤ 1/4;

E(z), 1/4 ≤ t ≤ 1/2;

E(z) ◦ K̃2
t , 1/2 ≤ t ≤ 3/4;

E(z) ◦Kah ◦ κ̃z,t.

If we compose a smooth function a with κz,t, we have

d

dt
κ∗z,ta =





d
dta(K̃

1
t ), 0 ≤ t ≤ 1/4;

d
dta(E(z)), 1/4 ≤ t ≤ 1/2;
d
dta(E(z)) ◦ K̃2

t , 1/2 ≤ t ≤ 3/4;
d
dta(E(z)Kah) ◦ κ̃z,t, 3/4 ≤ t ≤ 1;

=





(Hψ′

1(t)q
1a) ◦ K̃1

t , 0 ≤ t ≤ 1/4;
0, 1/4 ≤ 1/2;(
H(E(z)−1)∗ψ′

2(t)qah
a
)
◦E(z) ◦ K̃2

t , 1/2 ≤ t ≤ 3/4;(
H(K−1

ah
)∗(E(z)−1)∗ψ′(t)q̃z,ψ(t)

a
)
◦E(z) ◦Kah ◦ κ̃z,t, 3/4 ≤ t ≤ 1.

Summing up and using the support properties of ψ, ψ1, and ψ2, we have

d

dt
κz,t = (κz,t)∗Hq̃2z,t

,

where

q̃2z,t = (E(z)−1K−1
ah )∗ψ′(t)q̃z,ψ(t) + (E(z)−1)∗ψ′

1(t)q
1 + ψ′

2(t)qah.(7.5)

We record for later use that since ψ = ψ′ = 0 and ψ2 = ψ′
2 = 0 on the support

of χ′, we have for t ∈ suppχ′,

κz,t = E(z) =




id h+ 0 0
0 − id h− 0

0 0 ˜E(z)


 ,(7.6)

where id h+ is identity in xj and ξj for

1 ≤ j ≤ 2nhc + nhr+,

id h− is the identity in xj and ξj for

2nhc + nhr+ + 1 ≤ j ≤ 2nhc + nhr+ + nhr−,

and ˜E(z) is a z-dependent family of elliptic symplectic transformation in the vari-
ables xj and ξj for

2nhc + nhr+ + nhr− + 1 ≤ j ≤ 2nhc + nhr+ + nhr− + ne.

7.3. Step 2: Conjugation of Evolution Equations. For Step 2, we introduce
the following notation. By (Xhyp,Ξhyp) and (Xell,Ξell) we mean the symplectic
variables in the subspace associated to the hyperbolic and elliptic parts of dS(0, 0)
respectively. In our notation,

Xhyp = (X1, . . . , Xn−ne−1), Ξhyp = (Ξ1, . . . ,Ξn−ne−1),

and

Xell = (Xn−ne , . . . , Xn−1), Ξell = (Ξn−ne , . . . ,Ξn−1).
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The assumption that γ is semi-hyperbolic amounts to saying n − 1 − ne ≥ 1, or
that Xhyp are non-trivial variables. For a vector Y ∈ Rn−1, we define also

|Y |2hyp =

n−ne−1∑

j=1

Y 2
j and

|Y |2ell =

n−1∑

j=n−ne

Y 2
j ,

where as usual ne = n− 1− 2nhc − nhr+ − nhr−. If

〈B·, ·〉 : R
n−1 × R

n−1 → C

is a bilinear form, we will also use the notation

〈BY, (Zhyp, iZell)〉 =

n−1∑

j=1

n−ne−1∑

k=1

BjkYjZk + i

n−1∑

j=1

n−1∑

k=n−ne

BjkYjZk.

Let W (z) = M(z)−1 as above and let Qz,t = Opwh (q̃2z,t) for q̃2z,t in the form (7.5).
Again by modifying the proofs of [EvZw, Theorems 10.3, 10.7], there is W z(t) and
Wz,0 unitary satisfying (7.2-7.3) with this choice of Qz,t so that W z(1) = W (z).
As in §5, but with W z instead of Mz, if we conjugate W z(t) satisfying (7.2-7.3)
in a way which is independent of t, we get a new equation with a conjugated Qz,t.
That is, with Th,h̃ defined in (5.1), let

W z,1(t) = Th,h̃W
z(t)T−1

h,h̃

and observe W z,1(t) satisfies

hDtW
z,1 −Q1

z,tW
z,1 = 0, 0 ≤ t ≤ 1

W z,1(0) = Th,h̃Wz,0T
−1

h,h̃

for Q1
z,t = Th,h̃Qz,tT

−1

h,h̃
.

We define the escape function G in the new coordinates by

G(X,Ξ) =
1

2
log

(
1 + |X |2hyp

1 + |Ξ|2hyp

)
+ i

1

2
(|Xell|

2 − |Ξell|
2)(7.7)

=: G1 + iG2.

Here we have added an imaginary term to the definition of G. Observe

exp(iOpw
h̃
(G2))

is unitary. As mentioned in the introduction to this section, this is used to control
the nonlinear interactions between the hyperbolic and elliptic variables in a Poisson
bracket later in the proof.

The real part of G, G1, satisfies
∣∣∣∂αX∂βΞG1(X,Ξ)

∣∣∣ ≤ Cαβ〈X〉−|α|〈Ξ〉−|β|, for (α, β) 6= (0, 0),

and since 〈X〉2〈Ξ〉−2 is an order function, ReG satisfies the assumptions of [Chr1,
Lemma 2.1]. Thus we can construct the operators e±sχ(t)Gw , where Gw is the

h̃-Weyl quantization of G, and doing so we may define

W̃ (t) = e−sχG
w

W z,1(t)esχG
w

.(7.8)
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Similar to §5, W̃ satisfies the evolution equation

hDtW̃ − Q̃z,tW̃ =
h

i
sχ′(t)e−sχG

w [
W z,1, Gw

]
esχG

w

, 0 ≤ t ≤ 1(7.9)

W̃ (0) = e−sχ(0)GwTh,h̃Wz,0T
−1

h,h̃
esχ(0)Gw ,(7.10)

where

Q̃z,t = e−sχG
w

Q1
z,te

sχGw .

The definition of W z,1 together with modifying the proof of [EvZw, Theorem 10.3]
to the 2-parameter setting (using [Chr1, Lemma 2.5] to estimate the commutators)
implies

χ′(t)
[
W z,1, Gw

]
= χ′(t)Th,h̃

[
W z, T−1

h,h̃
GwTh,h̃

]
T−1

h,h̃

= χ′(t)Th,h̃Opwh

(
κ∗z,tG̃− G̃+O(h1/2h̃3/2)

)
W zT−1

h,h̃
,

where

G̃(x, ξ) = G
(
(h̃/h)

1
2 (x, ξ)

)
∈ S−∞,0,0

1
2

microlocally.

From (7.6) and the definition of G,

Reκ∗z,tG̃ = Re G̃

on suppχ′. Hence, using [Chr1, Lemma 2.5] and the modification of [EvZw, The-

orem 10.3] to the 2-parameter setting, there is a symbol et ∈ S
−∞,−1/2,−3/2
0 such

that

Im
h

i
sχ′(t)e−sχG

w [
W z,1, Gw

]
esχG

w

=

= Im
h

i
sχ′(t)

(
Op h̃(et) +

h̃

i
sχ′(t)GwOp h̃({et, G}) +O(h1/2h̃7/2)

)

= O(h3/2h̃3/2).

7.4. Step 3: Estimation of Q̃z,t. We want to gain some knowledge of Q̃z,t. For
that we use the techniques from the proof of Theorem 1 in [Chr1] together with the
necessary modifications discussed in the introduction. We summarize the content
of this Step in the following Lemma:

Lemma 7.1. For Q̃z,t as defined above, we have the estimate

− Im 〈Q̃z,tu, u〉 ≥ ψ
′(t)

hh̃

C
‖u‖2,(7.11)

for any u ∈ L2(Rn−1).

The idea is that the conjugated Q̃z,t is Q1
z,t to leading order, which is self-adjoint,

and the second order term is roughly the quantization of

h̃

i
HqG

for a quadratic form q. But then [Chr1, Theorem 4] and says that for the qua-
dratic forms in which we are interested we can make HqG into a positive definite
quadratic form, and there are linear symplectic coordinates in which HqG is almost
the harmonic oscillator

∑
j x

2
j + ξ2j .
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Let U be a neighbourhood of (0, 0), U ⊂ T ∗Rn−1, and assume

U ⊂ Uε/2 :=
{
(x, ξ) : |(x, ξ)| <

ε

2

}

for ε > 0. We assume throughout that we are working microlocally in Uε. With h̃
small (fixed later in the proof), we have done the following rescaling:

X :=
(
h̃/h

)1
2

x, Ξ :=
(
h̃/h

) 1
2

ξ(7.12)

We assume for the remainder of the proof that |(X,Ξ)| ≤
(
h̃/h

) 1
2

ε. We used the

unitary operator Th,h̃ defined in (5.1) to introduce the second parameter into Qz,t
to get

Q1
z,t = Th,h̃Qz,tT

−1

h,h̃

as above. On the support of χ(t), after a linear symplectic change of variables, we
write

Q2
z,t = Th,h̃Op h(ψ

′(t)q̃z,ψ(t) + (KahE(z))∗ψ′
2(t)qah)T

−1

h,h̃
,

where q̃z,t = 〈Bz,tx, ξ〉 defined in Step 1. The principal symbol of Q2
z,t on suppχ′

is

q2z,t(X,Ξ)(7.13)

= q3z,t(X,Ξ) + qah((h/h̃)
1
2 (X,Ξ))

= ψ′(t)

〈
Bz,ψ(t)

((
h/h̃

) 1
2

(X,Ξ)

)(
h/h̃

) 1
2

X,
(
h/h̃

) 1
2

Ξ

〉

+ψ′
2(t)

2hhc+nhr++nhr−+ne∑

j=2hhc+nhr++nhr−+1

(h/h̃)2XjΞj ,

and q2z,t ∈ S
−∞,0,0

− 1
2

microlocally. We have

∣∣∂αX,Ξq2z,t
∣∣ ≤ Cα

(
h/h̃

)|α|/2
(7.14)

for (X,Ξ) ∈ U
(h̃/h)

1
2 ε

by [Chr1, Lemma 2.4].

Now Re {G, qah((h/h̃)1/2(X,Ξ))} = 0, so to find the real part of Hq2z,t
G, we need

only calculate ReHq3z,t
G. For |(X,Ξ)| ≤

(
h̃/h

) 1
2

ε we have with G as above in (7.7)

Hq3z,t
G(X,Ξ) =

=
(
h/h̃

)
ψ′(t)

[〈
Bz,ψ(t)X,

∂

∂X

〉
−

〈
Bz,ψ(t)

∂

∂Ξ
,Ξ

〉]
G(X,Ξ)(7.15)

+
(
h/h̃

) 3
2

ψ′(t)



n−1∑

j=1

〈
∂

∂Ξj
Bz,ψ(t)(·, ·)X,Ξ

〉
∂

∂Xj
G(X,Ξ)


(7.16)

−
(
h/h̃

) 3
2

ψ′(t)



n−1∑

j=1

〈
∂

∂Xj
Bz,ψ(t)(·, ·)X,Ξ

〉
∂

∂Ξj
G(X,Ξ)


 .(7.17)
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Now owing to Lemma [Chr1, Lemma 2.5] and (7.14) we have microlocally to
leading order in h:

Re ad kGw
(
Q2
z,t

)
= OL2→L2

(
hh̃k−1

)
,

and in particular,

i Im
[
Q2
z,t, G

w
]

= −ih̃Re Opw
h̃

(
Hq2z,t

G
)

+O(h3/2h̃3/2).(7.18)

Estimating the real part of the errors (7.16-7.17), we get

Re
(
h/h̃

) 3
2



n−1∑

j=1

〈
∂

∂Ξj
Bz,ψ(t)(·, ·)X,Ξ

〉
∂

∂Xj
G(X,Ξ)




=
(
h/h̃

) 3
2 1

1 + |Xhyp|2
O(|Ξ||X ||Xhyp|),(7.19)

and analogously for (7.17). At (0, 0), Bz,ψ(t) is positive definite and block diagonal
of the form (6.14), so we compute:

∣∣∣∣
〈
Bψ(t)(0, 0)X,

(
Xhyp

1 + |Xhyp|2
, iXell

)〉∣∣∣∣ ≥ C−1

(
|Xhyp|2

1 + |Xhyp|2
+ |Xell|

2

)

= C−1 |X |
2 + |Xhyp|2|Xell|2

1 + |Xhyp|2
.

Hence

Re
1

1 + |Xhyp|2
O(|Ξ||X ||Xhyp|)

〈
Bψ(t)(0, 0)X,

(
Xhyp

1+|Xhyp|2
, iXell

)〉

∣∣∣
〈
Bψ(t)(0, 0)X,

(
Xhyp

1+|Xhyp|2
, iXell

)〉∣∣∣
(7.20)

= Re

〈
Bψ(t)(0, 0)X,

(
Xhyp

1 + |Xhyp|2
, iXell

)〉
O(|Ξ|),

and analogously for (7.17). Now we expand Bz,ψ(t) in a Taylor approximation about
(0, 0) to get

ReHq3z,t
G =

= Re
(
h/h̃

)
ψ′(t)

[〈
Bz,ψ(t)(0, 0)X,

(
Xhyp

1 + |X |2hyp

, iXell

)〉

+ Re
(
h/h̃

) 1
2

O

(
|X ||Xhyp|

1 + |Xhyp|2
|(X,Ξ)|

)]

+ Re
(
h/h̃

)
ψ′(t)

[〈
Bz,ψ(t)(0, 0)Ξ,

(
Ξhyp

1 + |Ξ|2hyp

, iΞell

)〉

+ Re
(
h/h̃

) 1
2

O

(
|Ξ||Ξhyp|

1 + |Ξhyp|2
|(X,Ξ)|

)]
,

which, from (7.20), is
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ReHq3z,t
G

= Re
(
h/h̃

)
ψ′(t)

〈
Bz,ψ(t)(0, 0)X,

(
Xhyp

1 + |X |2hyp

, iXell

)〉

·

(
1 +

(
h/h̃

) 1
2

O(|Ξ|)

)

+ Re
(
h/h̃

)
ψ′(t)

〈
Bz,ψ(t)(0, 0)Ξ,

(
Ξhyp

1 + |Ξ|2hyp

, iΞell

)〉

·

(
1 +

(
h/h̃

) 1
2

O(|X |)

)
.

Now since Bz,ψ(t)(0, 0) is block diagonal of the form (6.14), [Chr1, Theorem 4]
yields a linear symplectomorphism κ1 such that

Reκ∗1(Hq2z,t
(G)) =

=
(
h/h̃

)
ψ′(t)

[∑n−ne−1
j=1 r−2

j X2
j

1 + |MX |2

(
1 +

(
h/h̃

) 1
2

O(|Ξ|)

)

+

∑n−ne−1
j=1 r−2

j Ξ2
j

1 + |M ′Ξ|2

(
1 +

(
h/h̃

) 1
2

O(|X |)

)]
,

where M and M ′ are nonsingular. Thus, since χ(t)ψ′
1(t) = 0,

Im Q̃z,t

= Im sχ(t)[Q2
z,t, G

w] + sχ(t)Ew1 + s2χ(t)2Ew2

= −shχ(t)(A1(1 +E0) +A2(1 +E′
0))

w

+sχ(t)Ew1 + s2χ(t)2Ew2 ,(7.21)

with E0, E
′
0 = O(ε), E1 = O(h3/2h̃3/2), E2 = O(hh̃), and (A1 + A2)

w =: Aw =
Opw

h̃
(A) for

A(X,Ξ) = ψ′(t)(κ−1
1 )∗

(∑n−ne−1
j=1 r−2

j X2
j

1 + |MX |2
+

∑n−ne−1
j=1 r−2

j Ξ2
j

1 + |M ′Ξ|2

)
.(7.22)

From [EvZw, Theorem 10.3] there is a unitary h-FIO F1 quantizing κ−1
1 so that

Ã := F1Opw
h̃
(A)F−1

1 = Opw
h̃
(κ∗1A) +O(h̃2).

We claim that for h̃ sufficiently small and ṽ smooth,

〈Ãw ṽ, ṽ〉 ≥
h̃

C
‖ṽ‖2

for some constant C > 0, which is essentially the lower bound for the harmonic
oscillator h̃2D2

X +X2. It suffices to prove this inequality for individual j, which is
the content of [Chr1, Lemma 5.1]. As F1 is unitary, setting ṽ = F1ũ for ũ smooth



QUANTUM MONODROMY 45

gives

〈Awũ, ũ〉 ≥
h̃

C
‖ũ‖2 −O(h̃2)‖ũ‖2

≥
h̃

C ′
‖ũ‖2,(7.23)

for h̃ > 0 sufficiently small.
Now fix h̃ > 0 and |s| > 0 sufficiently small so that the estimate (7.23) holds

and the errors E1 and E2 satisfy

‖shAwũ‖L2 � ‖sEw1 ũ‖L2 + ‖s2Ew2 ũ‖L2 ,

and fix ε > 0 sufficiently small that the errors |E0|, |E0|′ � 1, independent of h > 0.
For ũ a smooth function with wavefront set contained in U , we now have

− Im 〈Q̃z,tũ, ũ〉 ≥ ψ′(t)χ(t)
hh̃

C
‖ũ‖2

= ψ′(t)
hh̃

C
‖ũ‖2,

since χ(t) ≡ 1 on the support of ψ′
1(t). This is (7.11), the crucial estimate needed

for Step 4.
If q̃z,t is not in the form (6.13), by Proposition 6.3 there is a symplectomorphism

κ2 so that κ∗2q̃z,t is of the form (6.13). Using [EvZw, Theorem 10.3] to quantize κ2

as an h-FIO F2, we get

Opwh (κ∗q̃z,t +E1) = F−1Q̃z,tF,

where E1 = O(h2) is the error arising from [EvZw, Theorem 10.3]. We may then
use the previous argument for κ∗2qz,t getting an additional error of O(h2) from
[EvZw, Theorem 10.3] in (7.11).

7.5. Step 4: Estimation of W̃ . Let v ∈ L2(V ) with wavefront set sufficiently

close to (0, 0), and set ṽ = Th,h̃v. Now W̃ (t) is no longer unitary, so we calculate

∂t

〈
W̃ (t)ṽ, W̃ (t)ṽ

〉
= 2

〈
∂tW̃ (t)ṽ, W̃ (t)ṽ

〉

=
2i

h

〈(
Q̃z,t +O(h3/2h̃3/2)

)
W̃ (t)ṽ, W̃ (t)ṽ

〉

= −
2

h

〈(
Im Q̃z,t +O(h3/2h̃3/2)

)
W̃ (t)ṽ, W̃ (t)ṽ

〉

≥ C−1
(
ψ′(t)h̃−O(h1/2h̃3/2)

)〈
W̃ (t)ṽ, W̃ (t)ṽ

〉
.

Thus there is a positive constant C such that

∂t

(〈
W̃ (t)ṽ, W̃ (t)ṽ

〉
e−(ψ(t)h̃−O(h1/2h̃3/2))/C

)
≥ 0,

so
∥∥∥W̃ (t)ṽ

∥∥∥
2

≥ eψ(t)(h̃−O(h1/2h̃3/2))/C‖W̃ (0)ṽ‖2

and since ψ(1) = 1, shrinking h̃ > 0 if necessary, we have for 0 < h ≤ h0 sufficiently
small,

∥∥∥W̃ (1)ṽ
∥∥∥ ≥ R‖W̃ (0)ṽ‖, R > 1 independent of 0 < h ≤ h0.
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Now

W̃ (0) = e−sχ(0)GwTh,h̃W
z(0)T−1

h,h̃
esχ(0)Gw

= Th,h̃W
z(0)T−1

h,h̃

is unitary, so
∥∥∥W̃ (1)ṽ

∥∥∥ ≥ R‖ṽ‖,(7.24)

independent of 0 < h ≤ h0.
As in §5, let the operators Kw be defined by

esK
w

= T−1

h,h̃
esχ(1)GwTh,h̃ = T−1

h,h̃
esG

w

Th,h̃,

so that

W̃ (1) = e−sK
w

M(z)−1esK
w

,

and Theorem 6 is proved. �

Remark 7.2. The error arising at the end of the proof of Theorem 6 from the
use of [EvZw, Theorem 10.3] is of order O(h2) and hence negligible compared to
our lower bound of h for A. However, the estimate of A is used for the imaginary

part of Q̃z,t, and the error in [EvZw, Theorem 10.3] is real, so O(h) would have
been sufficient. This means the analysis above does not strictly depend on using
the Weyl calculus.

Remark 7.3. It is interesting to note that the estimate (1.3) depends only on the
real parts of the eigenvalues λj above. Unraveling the definitions, the eigenvalues λj
are logarithms of the eigenvalues of the linearized Poincaré map dS(0) from above.
Then (1.3) depends only on the modulis of the eigenvalues of dS(0) which lie off
the unit circle. We interpret this as a quantum analogue of the fact that dS(0, 0)
is semi-hyperbolic.

8. Proof of the Main Theorems

The Main Theorem follows exactly as the Main Theorem in [Chr1] with the
corrections in [Chr1a]. The proofs of Theorems 1’ and 2’ procede with very little
modification. The only things left to do are to prove Theorems 3 and 3′ and indicate
how to prove Main Theorem’.

8.1. Proof of Theorems 3 and 3′. Owing to [BuZw, Lemma A.2], we only need

to prove that in both cases Q̃(z) satisfies a polynomial estimate of the form

‖Q̃(z)−1‖L2(X)→L2(X) ≤ Ch
N(8.1)

for some N and z ∈ [−ε, ε] + i(−c0h, c0h). The operator P (h)− z satisfies a similar
estimate microlocally near γ, so we have to glue the microlocal estimate into the
better propagation estimates. We first observe that for any δ > 0 we can take c0
sufficiently small and interpolate to get

‖P (−z)u‖ ≥ h1+δ/C‖u‖

for u with wavefront set sufficiently close to γ.
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Choose ψ0 ∈ C∞(T ∗X) satisfying ψ0 ≡ 1 near γ with small support. Choose
W ∈ C∞(T ∗X) so that W ≡ 1 away from γ and Wψ0 = 0. Finally, fix ε > 0 and
choose ψ1 ∈ C∞c (T ∗X) so that W ≥ ε > 0 on supp (1− ψ1). Then

‖ψ0u‖ ≤ Ch−1−δ‖(P − z)ψ0u‖+O(h∞)‖u‖

≤ Ch−1−δ‖Q̃(z)u‖+ Ch−δ‖ψ̃u‖+O(h∞)‖u‖

where ψ̃ ≡ 1 on WFh[P, ψ0]. But then the propagation estimate [Chr2, Lemma 2.4]
(trivially modified to the complex case) implies

‖ψ̃u‖ ≤ Ch−1‖Q̃(z)u‖+ C‖(1− ψ1)u‖.

But | Im z| ≤ c0h implies W + Im z ≥ ε− c0h ≥ ε/2 on supp (1− ψ1). Hence

‖(1− ψ1)u‖
2 ≤ C 〈(W + Im z)(1− ψ1)u, (1− ψ1)u〉

= −C Im
〈
Q̃(z)(1− ψ1)u, (1− ψ1)u

〉

= − Im
〈
(1− ψ1)

∗(1− ψ1)Q̃(z)u, u
〉

+O(h)‖u‖2

≤ Ch−1‖Q̃(z)u‖2 + Ch1‖u‖2.

Similarly, we use propagation again to estimate

‖(1− ψ0)u‖
2 ≤ Ch−1‖Q̃(z)u‖2 + C‖(1− ψ1)u‖

2 +O(h∞)‖u‖2,

so that

‖u‖ ≤ ‖ψ0u‖+ ‖(1− ψ0)u‖

≤ Ch−1−δ‖Q̃(z)u‖+ Ch1/2−δ‖u‖2.

Taking δ < 1/2 yields (8.1).

8.2. Proof of the Main Theorem. Let Ww be a symbol which is microlocally 1
away from γ, and for z ∈ [−ε0, ε0] + i(−c0h, c0h), define as in (1.6)

Q̃(z) := P (h)− z − iWw.(8.2)

For the analysis near the boundary, choose also ψ ∈ C∞(R) satisfying (2.6-2.7).
Let m±

j ∈ T ∗X , for j = 1, . . . ,K denote the points where γ reflects off the

boundary, with m±
j denoting the point of intersection with the boundary of the

outgoing and incoming bicharacteristics respectively, and let mj be the projection

ofm±
j onto T ∗(∂X). Let Uj ⊂ T

∗(∂X) denote a neighbourhood ofmj which is small
enough so that a factorization of P as in Lemma 2.1 is possible in a neighbourhood
of Uj . Shrinking Uj if necessary, we assume also that the construction in Lemma
2.6 is valid in a neighbourhood of Uj . That is, if P is factorized as in Lemma 2.1
near Uj , we write

P = (hD1 −A−(x, hD′))(hD1 −A+(x, hD′)) near mj ,

and there is an operator Ab,j(x, hD
′) which is 1 microlocally near Uj , zero away

from Uj and commutes with (hD1 − A+(x, hD′)) microlocally near Uj .

Let γj± be a small interval on the outgoing/incoming bicharacteristic near m±
j ,

and let Ũj ⊂ T ∗X be a neighbourhood of γj± such that

(WFh(ψ(P )Ab,j))|∂X ⊂ Ũj ,
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and ψ(P )Ab,j ≡ 1 on γj±∩Ũj . Choose χj ∈ C∞c (T ∗X), χj ≡ 1 on Ũj with sufficiently
small support that

ψ(P )Ab,j ≡ 1 on supp∇χj ∩ γ.(8.3)

Finally, set

χ0 = 1−
∑

j

χj .

Now for A ∈ Ψ0,0
h,db as in the statement of the Main Theorem’ with wavefront set

sufficiently close to γ, let A0 ∈ Ψ0,0
h have wavefront set close to γ and satisfy

A0 ≡ 1 on



WFhA \




⋃

j

Ũj







 ,

A0 ≡ 1 on




K⋃

j=0

supp∇χj


 ∩ γ,(8.4)

A0 ≡ 0 elsewhere .

We define Ã ∈ Ψ0,0
h,db satisfying

Ã ≡ 1 on WFhA(8.5)

by

Ã = χ0A0 +
∑

j

χjψ(P )Ab,j ,

where ψ satisfies (2.6-2.7). Observe if WFhA is sufficiently close to γ, Ã satisfies

(8.5). We have Q(0)Ãu = P (h)Ãu since WFha
w ∩WFhÃ = ∅. But

P (h)Ãu =
[
P (h), Ã

]
u+ ÃP (h)u(8.6)

and we claim

∥∥∥
[
P, Ã

]
u
∥∥∥ =

∥∥∥∥∥∥
[P, χ0A0]u+

∑

j

([P, χjψ(P )Ab,j ])u

∥∥∥∥∥∥
= O(h) ‖(I −A)u‖ .(8.7)

To see this, we observe for u ∈ C∞(X) ∩ L2(X),

[P, χ0A0]u+
∑

j

[P, χjAb.j ] =

= χ0 [P,A0]u+ [P, χ0]A0u

+
∑

j

(χjψ(P ) [P,Ab,j ] + [P, χj ]ψ(P )Ab,j) u

We have

‖([P, χ0]A0 +
∑

j

[P, χj ]ψ(P )Ab,j)u‖ ≤ Ch‖(I −A)u‖
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from (8.3) and (8.4). These two conditions also imply

WFhχ0 [P,A0] ∩ γ = ∅ and

WFhχjψ(P ) [P,Ab,j ] ∩ γ = ∅,

and the symbol of A0 is compactly suppported away from the boundary, so

‖χ0 [P,A0]u‖ ≤ Ch‖(I −A)u‖.

For each j, it suffices to consider the remaining terms in local coordinates at the
boundary. Fix j and assume we are in the coordinates used in Lemma 2.6 in Uj :

χjψ(P ) [P,Ab,j(x, hD
′)] =

= χjψ(P ) [(hD1 −A−(x, hD′))(hD1 −A+(x, hD′)), Ab,j ]

= χjψ(P ) [(hD1 −A−(x, hD′)), Ab,j(x, hD
′)] (hD1 −A+(x, hD′)),

since Ab,j commutes with (hD1 −A+(x, hD′)). The principal symbol of

χjψ(P ) [(hD1 −A−(x, hD′)), Ab,j(x, hD
′)]

is

h

i
χjψ((ξ1 − r

1
2 (x, ξ′))(ξ1 + r

1
2 (x, ξ′)))

{
(ξ1 + r

1
2 (x, ξ′)), σh(A

+
b,j)(x, ξ

′)
}
,

which is O(h) and has h-wavefront set away from γ. Summing over j gives (8.7).
We now use the control theory arguments from [BuZw] and [Chr1a]. That is, for

z ∈ [−1/2, 1/2]

‖Ãu‖ ≤C‖Q̃(z)−1Q̃(z)Ãu‖+O(h∞)‖u‖

=C‖Q̃(z)−1(Ã(P (h)− z) + [P (h), Ã])u‖+O(h∞)‖u‖

≤C‖Q̃(z)−1Ã(P (h)− z)u‖+ C‖Q̃(z)−1ϕ[P (h), Ã]u‖+O(h∞)‖u‖

≤C
log(1/h)

h
‖(P (h)− z)u‖+ C log1/2(1/h)‖(I −A)u‖+O(h∞)‖u‖.(8.8)

Here we have used that Q̃(z)A = (P (h)− z)A, (8.6), (2.5) and P (h)− z is elliptic
away from {p = z} ⊃ γ.

This gives

‖u‖ ≤ ‖Ãu‖+ ‖(I −A)u‖

≤ C
log(1/h)

h
‖(P (h)− z)u‖+ C(log1/2(1/h) + 1)‖(I −A)u‖+O(h∞)‖u‖

which proves the Main Theorem’.

8.3. The proof of Theorem 2 and Theorem 2′. In order to prove Theorem
2 and Theorem 2′, which indicate the complex absorption term need only be of
size h. We first repeat the calculations leading to (8.8) with P (h) replaced by
Q(z) = P (h)− z − ihaw

Next, we assume aw = B∗B for some non-negative definite B ∈ Ψ0, so that

‖Bu‖2 = 〈au, u〉 ,

and [Chr2, Lemma 2.4] implies

‖(1−A)u‖ ≤
C

h
‖Q(z)u‖+ C‖Bu‖+O(h∞)‖u‖.
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Then, again using [Chr2, Lemma 2.4] on the term with (1 − A)u in (8.8) all told
we have the estimate

‖u‖ ≤ C
log(1/h)

h
‖Q(z)u‖+ C log1/2(1/h)‖Au‖+O(h∞)‖u‖.

Finally, to get the estimates (1.5) and (2.3) (and the improvement to a complex
neighbourhood), we calculate for z ∈ [−1/2, 1/2],

‖Au‖2 = 〈au, u〉

=
1

h
Im 〈Q(z)u, u〉

≤
1

h
‖Q(z)u‖‖u‖,

so that we have for any ε > 0,

log1/2(1/h)‖Au‖ ≤ log1/2(1/h)

(
1

h
‖Q(z)u‖‖u‖

)1/2

≤
log(1/h)

2εh
‖Q(z)u‖+ ε‖u‖.

Combining this with (8.8) and taking ε > 0 sufficiently small yields Theorems 2 and
2′. The improvement to | Im z| ≤ ch/ log(1/h) follows from taking c > 0 sufficiently
small, since then the order of the perturbation is the same order as the estimate.

9. An Application: Quasimodes near Elliptic Orbits

In this section, we show how the techniques of reducing microlocal estimates near
a periodic orbit to estimates on an h-Fourier integral operator acting microlocally
on the Poincaré section via the Quantum Monodromy operator from [SjZw1] and
§4 can be used with the quasimode construction in [ISZ] to produce well-localized
quasimodes near an elliptic periodic orbit. We also give estimates on the number
and location of approximate eigenvalues associated to the quasimodes.

Let X be a smooth, compact manifold, dimX = n, and suppose P ∈ Ψk,0(X),
k ≥ 1, be a semiclassical pseudodifferential operator of real principal type which
is semiclassically elliptic outside a compact subset of T ∗X as in the introduction.
Let Φt = exp tHp be the classical flow of p and assume there is a closed elliptic
orbit γ ⊂ {p = 0}. That γ is elliptic means if N ⊂ {p = 0} is a Poincar’e section
for γ and S : N → S(N) is the Poincaré map, then dS(0, 0) has eigenvalues all of
modulus 1. We will also need the following non-resonance assumption:

{
if e±iα1 , e±iα2 , . . . , e±iαk are eigenvalues of dS(0, 0), then
α1, α2, . . . , αk are independent over πZ.

(9.1)

Finally, we assume if γ ∩ ∂X 6= ∅ then γ reflects only transversally off ∂X , ∂X
is noncharacteristic with respect to P , and P ∈ Diff2,0

h,db.
Under these assumptions, it is well known that there is a family of elliptic closed

orbits γz ⊂ {p = z} for z near 0, with γ0 = γ. In this work we consider the following
eigenvalue problem for z in a neighbourhood of z = 0:

{
(P − z)u = 0;
‖u‖L2(X) = 1.

(9.2)

We prove the following Theorem.
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Theorem 7. For each m ∈ Z, m > 1, and each c0 > 0 sufficiently small, there is
a finite, distinct family of values

{zj}
N(h)
j=1 ⊂ [−c0h

1/m, c0h
1/m]

and a family of quasimodes {uj} = {uj(h)} with

WFhuj = γzj ,

satisfying
{

(P − zj)uj = O(h∞)‖uj‖L2(X);
‖uj‖L2(X) = 1.

(9.3)

Further, for each m ∈ Z, m > 1, there is a constant C = C(c0, 1/m) such that

C−1h−n(1−1/m) ≤ N(h) ≤ Ch−n.(9.4)

9.1. The Model Case. We consider the case n = 2, the first nontrivial dimension.
Recall the model for p near an elliptic periodic orbit is p ∈ C∞(T ∗(S1 × R)),

p = τ +
α

2
(x2 + ξ2),

with α > 0 satisfying α /∈ πZ. Then we study (9.2) for

P = hDt +
α

2
(x2 + h2D2

x).

Let

Q =
α

2
(x2 + h2D2

x)

= Opwh

(α
2

(x2 + ξ2)
)
.

Q is just α/2 times the harmonic osciallator, so we have

Qvk = h
α

2
(2k + 1)vk

for

vk := h−1/4Hk(x/h
1
2 )e−x

2/2h,

‖vk‖L2 = 1,

where Hk are the (normalized) Hermite polynomials of degree k (see, for example,
[EvZw]). Note WFhvk = (0, 0). Now we make an ansatz of

u = gk(t)vk(x)

for gk(t) to be determined. Plugging u into (9.2) yields

hDtgk +
α

2
h(2k + 1)gk = zgk,

which implies

gk(t) = exp

(
it

h

(
z −

α

2
(2k + 1)h

))
.

Since the spectrum of hDt on S
1 is {2πmh}m∈Z, we have

z =
α

2
(2k + 1)h+ 2πmh.(9.5)

In the model case, since there is no microlocalization necessary (and, in particular,
p is not elliptic at infinity), we actually have dense spectrum in any interval.
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In order to motivate our general construction, we present the same example
from the point of view of the monodromy operator. Here we think of Q − z as a
z-dependent family of operators on L2(V ), where V ⊂ R is an open neighbourhood
of 0. Then the monodromy operator M(z) is defined microlocally as the time t = 1
solution to the ordinary differential equation

{
hDtM(z, t) + (Q− z)M(z, t) = 0,
M(z, 0) = id L2(V )→L2(V ).

(9.6)

Our general technique will be to find eigenfunctions of M(z) = M(z, 1) with eigen-
value 1. Using again vk as in the previous paragraph, we try

M(z, t)vk = e−i2πmtvk,

with m ∈ Z so that M(z, 1)vk = vk. This yields from (9.6)
(
−h2πm+

α

2
h(2k + 1)− z

)
vk = 0

which is the same as (9.5).

9.2. Quasimodes on the Poincaré section. Theorem 5 and the definition of
the monodromy operator M(z) motivate us to study the normal form for a family
of elliptic symplectomorphisms

Sz : W1 →W2

under the nonresonance condition (9.1) on dS(0), where W1 and W2 are neighbour-
hoods of 0 ∈ R

2n−2. We use the standard notation of [ISZ] and write

ıj = x2
j + ξ2j , and

Ij = ıwj = x2
j + h2D2

xj .

According to the results of [IaSj] and [ISZ], there is a symplectic choice of coordi-
nates near (x, ξ; z) = (0, 0; 0) such that

Sz = expHqz +O((x, ξ; z)∞),(9.7)

for

qz =

n−1∑

j=1

λj(z)ıj +R(z, ı1, . . . , ın−1).

Here the remainder R(z, ı) = O(ı2) and the λj(z) are positive and depend smoothly
on z.

Further, if M(z) is the monodromy operator quantizing Sz and

(i) z ∈ [−ε0h
1/m, ε0h

1/m] + i(−c0h, c0h),(9.8)

(ii) ıj ≤ h
1/m(9.9)

for m ∈ Z, m > 1, then there is a family of unitary h-FIOs V (z) such that

eiz/hM(z) = V (z)−1e−i(Q(z,h)−z)/hV (z) +OL2→L2(h∞),(9.10)

where

Q(z, h) =

∞∑

j=0

hjqj(z, I), with(9.11)

qj(z, I) = O(I)
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and

q0(z, ı) = qz(ı).

Now let β ∈ N
n−1 be a multi-index and define

vβ = cβh
−(n−1)/4e−|x|2/2h

n−1∏

j=1

Hβj (xj/h
1
2 ),

with Hβj the Hermite polynomials as in §9.1 and cβ chosen independent of h to

normalize vβ in L2(Rn−1). The functions vβ satisfy

Ijvβ = h(2βj + 1)vβ ,

and with 1 = (1, . . . , 1) ∈ N
n−1 we write

Ivβ = h(2β + 1)vβ .

Hence we have

Q(z, h)vβ =




∞∑

j=0

hjqj(z, h(2β + 1))


 vβ

=: ζβ(z)vβ ,(9.12)

where

ζβ(z) = h

n−1∑

j=1

λj(z)(2βj + 1) +O(h2).

The quantization condition (9.9) implies we have the restriction on ζβ :

|h
n−1∑

j=1

λj(z)(2βj + 1)| ≤ Ch1/m,

for 0 < 1/m < 1, giving

#{ζβ(z)} = #





∣∣∣∣∣∣
h

n−1∑

j=1

λj(z)(2βj + 1)

∣∣∣∣∣∣
≤ Ch1/m





' #{|β| ≤ h1/m−1}

' h(1/m−1)(n−1) + o(1).(9.13)

9.3. The proof of Theorem 7. Observe the functions vβ constructed above sat-
isfy

WFhvβ = (0, 0) ∈ R
2n−2.

Beginning with vβ we want to construct ṽβ,k and find values of z, β, and k ∈ Z so
that

( id −M(z))ṽβ = O(h∞).

Let

M̃(z) = V (z)M(z)V (z)−1 = e−i(Q(z,h)−z)/h

with V (z) and Q(z, h) as in (9.10), and observe M̃(z) = M̃(z, 1) for

M̃(z, t) = exp(−it(Q(z, h)− z)/h)
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satisfying
{

hDtM̃(z, t) +Q(z, h)M̃(z, t) = zM̃(z, t)

M̃(z, 0) = id .
(9.14)

The spectrum of hDt on R/Z is {h2πk} for k ∈ Z, so we want the solution space
to (9.14) intersected with the solution space to

(eiz/h − M̃(z, 1))v = v

to contain the “ansatz” space

vk,β(t, x) := e−it2πkvβ(x).(9.15)

More precisely, vk,β(1, x) = vβx, so we want to solve
{

hDtM̃(z, t)vβ,k + (Q(z, h)− z)M̃(z, t)vβ,k = −zM̃(z, t)vβ,k
M̃(z, 0)vβ,k = vβ,k.

That is, we want to find z satisfying

2z − ζβ(z) = 2πkh,

where ζβ(z) is given by (9.12).
Expanding Q(z, h) in a formal series in z as we may do according to the quan-

tization condition (9.9), we write

Q(z, h) =
∞∑

l=0

zlQl(h, I)(9.16)

microlocally, with

Q0 =

n−1∑

j=1

λj(0)Ij +O(I2),

and

Ql = O(I).

Hence we will seek

zk,β =

∞∑

j=0

z
(j)
k,β,(9.17)

with z
(j)
k,β = O(h(j+1)/m). For z

(0)
k,β , we solve

2z
(0)
k,β = h

n−1∑

j=1

λj(0)(2βj + 1) + 2kπh

which is O(h1/m) if

|k| ≤ Ch1/m−1.(9.18)

For z
(1)
k,β we plug z

(0)
k,β + z

(1)
k,β into (9.16) to get the equation

2z
(0)
k,β + 2z

(1)
k,β = h

n−1∑

j=1

λj(0)(2βj + 1) + 2kπh+

∞∑

l=1

(z
(0)
k,β + z

(1)
k,β)

lQl(h, h(2β + 1))

= 2z
(0)
k,β + z

(0)
k,βQl(h, h(2β + 1)) +O(h3/m),



QUANTUM MONODROMY 55

provided z
(1)
k,β = O(h2/m). Hence we choose

2z
(1)
k,β = z

(0)
k,βQl(h, h(2β + 1)).

Continuing in this fashion, we select z
(j)
k,β for j ≥ 2 using the following equation:

2

j∑

r=0

z
(r)
k,β =

j−1∑

r=0

(
j−r−1∑

l=0

z
(l)
k,β

)r
Qr(h, h(2β + 1)),

modulo O(h(j+2)/m), hence z
(j)
k,β = O(h(j+1)/m).

Now there is no reason why (9.17) should converge in any sense, so we want to
find a convergent series

z̃k,β =

∞∑

j=0

z̃
(j)
k,β

with z̃
(j)
k,β = O(h(j+1)/m), satisfying

z̃k,β −
mN∑

0

z
(j)
k,β = O(hN )(9.19)

for every N > 0. For this, we follow the proof of Borel’s Lemma from [EvZw].
Choose χ ∈ C∞c ([−1, 2]) satisfying χ ≡ 1 on [0, 1]. Set

z̃k,β =

∞∑

j=0

χ(λjh)z
(j)
k,β ,

where λj →∞, λj < λj+1 has yet to be selected. Observe for each h > 0, this is a
finite sum, hence converges. We calculate:

z̃k,β −
mN+m∑

j=0

z
(j)
k,β =

∞∑

mN+m+1

χ(λjh)z
(j)
k,β +

mN+m∑

0

z
(j)
k,β(χ(λjh)− 1)

=: A+B.

But since xχ(x) is uniformly bounded, we have

|A| ≤
∞∑

mN+m+1

Cjh
(j+1)/m λjh

λjh
χ(λjh)

≤
∞∑

mN+m+1

C ′
jh

(j−m+1)/mλ−1
j

≤ hN
∞∑

mN+1

2−j

if λj is sufficiently large.
To estimate B, we observe for 0 < λmN+mh ≤ 1, B = 0 since χ ≡ 1 on [0, 1]. If

λmN+m < h, we calculate

|B| ≤
mN+m∑

0

Cjh
(j+1)/m(χ(λjh)− 1)

≤ CNh
1/mλNmN+mh

N ,
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which is (9.19).
Now for fixed (β, k) and N > 0, we have the crude estimate

z̃lβ,k −



mN+m∑

j=0

(z
(j)
k,β)



l

=


z̃β,k −

mN+m∑

j=0

(z
(j)
k,β)


 (lO(1)),

which from the definitions of zk,β, z̃k,β , and Ql(h, I) gives:

hDtM̃(z̃k,β , t)vβ + (Q(z̃k,β , t)− z̃k,β)M̃(z̃k,β , t)vβ =

= hDtM̃(z̃k,β , t)vβ

+



mN+m∑

l=0



mN∑

j=0

(z
(j)
k,β)



l

Ql(h, h(2β + 1))−
mN+m∑

j=0

(z
(j)
k,β)


 M̃(z̃k,β , t)vβ

+O(hN )‖vβ‖L2(Rn−1)

= (2kπh− z̃k,β)M̃(z̃k,β , t)vβ +O(hN )‖vβ‖L2(Rn−1).

Hence

M̃(z̃k,β , t)vβ = eit(2πk−z̃k,β/h)vβ + tO(hN−1)‖vβ‖L2(Rn−1),

so

(eiz̃k,β/h − M̃(z̃k,β))vβ = O(hN−1)‖vβ‖L2(Rn−1)

for any N , or

(eiz̃k,β/h − M̃(z̃k,β))vβ = O(h∞)‖vβ‖L2(Rn−1).

Now the definition of M̃ implies

M(z̃k,β)V (z̃k,β)
−1vβ = V (z̃k,β)

−1vβ +O(h∞)‖V (z̃k,β)
−1vβ‖L2(Rn−1),

so

uz̃k,β := E+V (z̃k,β)
−1vβ ,

with E+ defined in (4.4) satisfies (9.3).
Finally, the quantization conditions (9.8-9.9) and the estimates (9.13) and (9.18)

give

#{z : (Q(z, h)− z)v = O(h∞)} ≥ C−1h−n(1−1/m),

which is (9.4).
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Appendix A. Semi-hyperbolic geodesics in 3 dimensions

In this appendix, we modify the example of Colin de Verdière-Parisse [CVP] to
extend to three dimensions and have a semi-hyperbolic geodesic.

Consider the Riemannian manifold

M = Rx/Z× Ry × Rz

equipped with the metric

ds2 = cosh2 y(2z4 − z2 + 1)2dz2 + dy2 + dz2.

Thus the matrix for the metric

gij =





cosh2 y(2z4 − z2 + 1)2, i = j = 1,
1, i = j = 2, 3,
0, i 6= j.

,

and we calculate the Christoffel symbols:

Γ1
2,1 = Γ1

1,2 = tanh y,

Γ1
3,1 = Γ1

1,3 = (8z3 − 2z)(2z4 − z2 + 1)−1,

Γ2
1,1 = − sinh y cosh y(2z4 − z2 + 1)2,

Γ3
1,1 = −(8z3 − 2z)(2z4 − z2 + 1) cosh2 y,

with all other Christoffel symbols equal to zero. The geodesic equtions are

ẍ = −2(tanh y)ẏẋ− 2((8z3 − 2z)(2z4 − z2 + 1)−1)żẋ

ÿ = sinh y cosh y(2z4 − z2 + 1)2ẋ2

z̈ = (8z3 − 2z)(2z4 − z2 + 1) cosh2 yẋ2.

Setting vx = ẋ, vy = ẏ, and vz = ż, we get the first order system

ẋ = vx,

v̇x = −2(tanh y)vyvx − 2((8z3 − 2z)(2z4 − z2 + 1)−1)vzvx,

ẏ = vy,

v̇y = sinh y cosh y(2z4 − z2 + 1)2v2
x,

ż = vz,

v̇z = (8z3 − 2z)(2z4 − z2 + 1) cosh2 yv2
x.

There are trivially three periodic geodesics, given by the solutions

x(t) = vx(0)t+ x(0),

y(t) = 0,

z(t) = 0,±1/2.

Next we examine the Laplace-Beltrami operator on M . We compute

∆ = |g|−1/2∂i|g|
1/2gij∂j

= cosh−2 y(2z4 − z2 + 1)−2∂2
x + ∂2

y + ∂2
z

+ tanh y∂y + (8z3 − 2z)(z4 − z2 + 1)−1∂z .

The isometry T : L2(M,dVolg)→ L2(M,dx dy dz) given by

Tu(x, y, z) = cosh1/2 y(2z4 − z2 + 1)1/2u(x, y, z)
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−1/4 < z(0) < 0

z = 0

z = −1/4 z = 1/4

Figure 8. The x-z hypersurface in M with some representative orbits.

conjugates ∆ into a self-adjoint operator ∆̃. A computation yields

∆̃ = T∆T−1

= cosh−2 y(2z4 − z2 + 1)−2∂2
x + ∂2

y + ∂2
z −

1

4
(1 + sech2y)

+
1

4
(8z3 − 2z)2(2z4 − z2 + 1)−2 −

1

2
(24z2 − 2)(2z4 − z2 + 1)−1.

In keeping with the theme of this work, we want to examine asymptotic behaviour
of eigenfunctions for this operator. In order to separate variables, let

ϕk,λ(x, y, z) = eikxψk,λ(y, z),

and compute:

−∆̃ϕk,λ =

=
(
−∆y,z + k2 cosh−2 y(2z4 − z2 + 1)−2 +

1

4
(1 + sech2y)

−
1

4
(8z3 − 2z)2(2z4 − z2 + 1)−2 +

1

2
(24z2 − 2)(2z4 − z2 + 1)−1

)
ϕk,λ.

Rearranging, we have the following equation for ψk,λ:

(
−∆y,z + k2(cosh−2 y(2z4 − z2 + 1)−2 − 1)

+
1

4
(1 + sech2y)−

1

4
(8z3 − 2z)2(2z4 − z2 + 1)−2

+
1

2
(24z2 − 2)(2z4 − z2 + 1)−1

)
ψk,λ

= (λ− k2)ψk,λ.
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We divide by k2 and use h = 1/k as the semiclassical parameter, giving

P (h)ψh = (−h2∆yz + V (y, z))ψh

= (h2λ− 1)ψh,

with

V (y, z) = cosh−2 y(2z4 − z2 + 1)−2 − 1 +

h2 1

4
(1 + sech2y)− h2 1

4
(8z3 − 2z)2(2z4 − z2 + 1)−2

+h2 1

2
(24z2 − 2)(2z4 − z2 + 1)−1.

The semiclassical principal symbol is

σh(P ) = η2 + ζ2 + cosh−2 y(2z4 − z2 + 1)−2 − 1

=: η2 + ζ2 + Ṽ .

Observe Ṽ has nondegenerate critical points at y = 0, z = 0,±1/4. The signatures

of ∂2Ṽ are (−,+), (−,−), and (−,−), respectively. Thus the quadratic part of the
normal forms for σh(P ) takes the form

λ1yη +
λ2

2
(z2 + ζ2), near y = 0, z = 0, and

λ1yη + λ2zζ, near y = 0, z = ±1/4.
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[Hor] Hörmander, L. The Analysis of Linear Partial Differential Operators III. Springer-
Verlag, Berlin, 1985.
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