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Abstract. For a large class of semiclassical pseudodifferential operators, in-
cluding Schrödinger operators, P (h) = −h2∆g + V (x), on compact Riemann-

ian manifolds, we give logarithmic lower bounds on the mass of eigenfunctions
outside neighbourhoods of generic closed hyperbolic orbits. More precisely we

show that if A is a pseudodifferential operator which is microlocally equal to
the identity near the hyperbolic orbit and microlocally zero away from the

orbit, then

‖u‖ ≤ C(
p

log(1/h)/h)‖P (h)u‖ + C
p

log(1/h)‖(I − A)u‖ .

This generalizes earlier estimates of Colin de Verdière-Parisse [CVP] obtained

for a special case, and of Burq-Zworski [BuZw] for real hyperbolic orbits.

1. Introduction

To motivate the general result, we first present two applications. If (X, g) is a
Riemannian manifold with Laplacian ∆g, we consider the eigenvalue problem

−∆gu = λ2u, ‖u‖L2(X) = 1.

If U is a small neighbourhood of a closed hyperbolic geodesic γ, we show that
∫

X\U

|u|2dx ≥ c

log |λ| ,

that is, if u concentrates near γ, the rate is logarithmic. This generalizes results of
Colin de Verdière-Parisse [CVP] and Burq-Zworski [BuZw].

As another application of our main results we consider the damped wave equation
{ (

∂2
t − ∆ + 2a(x)∂t

)
u(x, t) = 0, (x, t) ∈ X × (0,∞)

u(x, 0) = 0, ∂tu(x, 0) = f(x).

We prove in §7 that if a(x) > 0 outside a neighbourhood of a closed hyperbolic
geodesic γ, we have the following energy estimate:

‖∂tu‖2
L2(X) + ‖∇u‖2

L2(X) ≤ Ce−t/C‖f‖2
Hε(X),

for all ε > 0. (In §7 a weaker geometric control condition in the spirit of Rauch-
Taylor [RT] is considered.) This application was suggested to us by M. Hitrik, and
it generalizes an example of Lebeau [Leb].

We now turn to the general case. Let X be a compact n-dimensional manifold
without boundary. We consider a selfadjoint pseudodifferential operator, P (h),
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with real principal symbol p. We assume throughout if p = 0 then dp 6= 0, and that
p is elliptic outside of a compact subset of T ∗X. Assume that

γ ⊂ p−1(0)

is a closed loxodromic orbit of the Hamiltonian flow of p. Let N ⊂ {p = 0} be a
Poincaré section for γ and let S be the Poincaré map. The assumption that γ be
loxodromic means that no eigenvalue of dS(0, 0) lies on the unit circle. We assume
also that dS(0, 0) has no real negative eigenvalues.

Main Theorem. Let A ∈ Ψ0,0
h be a pseudodifferential operator whose principal

symbol is 1 near γ and 0 away from γ. Then, there exist constants h0 > 0 and
0 < C < ∞ so that we have uniformly in 0 < h < h0,

‖u‖ ≤ C

√
log(1/h)

h
‖P (h)u‖+ C

√
log(1/h)‖(I −A)u‖ ,(1.1)

where the norms are L2 norms on X. In particular if a family, u = u(h) satisfies

P (h)u = OL2(h∞), ‖u‖L2(X) = 1 ,

then

‖(I − A)u‖L2(X) ≥
1

C
log ((1/h))

− 1
2 , 0 < h < h0 .(1.2)

We note that the assumptions on A imply that WFh (A) is contained in a neigh-
bourhood of γ, while WFh (I −A) is away from γ, see §2 for definitions.

Colin de Verdière and Parisse [CVP] have shown that the estimates (1.1-1.2)
are sharp in the case where X is a segment of a hyperbolic cylinder and P (h) =
−h2∆g is its Dirichlet Laplacian. Even though the closed orbit at the “neck” of the
cylinder is hyperbolic, the flow is completely integrable in that case. This shows
that eliminating the log(h−1) factor requires global conditions on the classical flow.

The assumption that the Poincaré map has no negative eigenvalues is standard in
the literature on quantum Birkhoff normal forms (see, for example, [IaSj], [ISZ], and
[Ze]), and in the present work serves to eliminate cases in which current techniques
seem to break down. It is important to note that this case does arise, as in the
example in [Kl] §3.4.

There are many examples in which the hypotheses of the theorem are satisfied,
the simplest of which is the case in which p = |ξ|2 − E(h) for E(h) > 0. Then
the Hamiltonian flow of p is the geodesic flow, so if the geodesic flow has a closed
hyperbolic orbit, there is non-concentration of eigenfunctions, u(h), for the equation

−h2∆u(h) = E(h)u(h).

Another example of such a p is the case p = |ξ|2 + V (x), where V (x) is a confining
potential with three “bumps” or “obstacles” in the lowest energy level (see Figure
1). In the appendix to [Sjö2] it is shown that for an interval of energies V (x) ∼ 0,
there is a closed hyperblic orbit γ of the Hamiltonian flow which “reflects” off the
bumps (see Figure 2). Loxodromic orbits may be constructed by considering 3-
dimensional hyperbolic billiard problems (see, for example, [AuMa]), although in
the present work we are assuming the orbit does not intersect the boundary of
the manifold. In addition, Proposition 4.1 gives a somewhat artificial means of
constructing a manifold diffeomorphic to a neighbourhood in T ∗S1

(t,τ) × T ∗Rn−1
(x,ξ)

which contains a loxodromic orbit γ by starting with the Poincaré map γ is to have.
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Figure 1. A confining potential V (x) with three bumps at the
lowest energy level E < 0.

γ

V (x) = 0

Figure 2. The level set V (x) = 0 and the closed hyperbolic orbit γ.

In order to prove the Main Theorem, we will first prove that the principal symbol
of P (h) can be put into a normal form near γ. This will allow analysis of small
complex perturbations of P (h). These are defined as follows: let a ∈ C∞(T ∗X, [0, 1])
be equal to 0 in a neighbourhood of γ and 1 outside of a larger neighbourhood of
γ. For z ∈ [−1, 1] + i[−δ, δ], define

Q(z) := P (h) − z − ihCaw,(1.3)

for a constant C to be fixed later. The following theorem states that by perturbing
P (h) into Q(z) we are able to push the spectrum of P (h) into the lower half plane.

Theorem 1. There exist constants c0 > 0, h0 > 0, and N0 such that for u with
WFh (u) in a sufficiently small neighbourhood of γ, z ∈ [−1, 1]+ i(−c0h,+∞), and
0 < h < h0 we have

‖Q(z)u‖L2(X) ≥ C−1hN0 ‖u‖L2(X)(1.4)

for some constant C.
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Using Theorem 1 and a semiclassical adaptation of the “three-lines” theorem
from complex analysis, we will be able to deduce the following estimate.

Theorem 2. Suppose Q(z) is given by (1.3), and z ∈ I b (−∞,∞). Then there
is h0 > 0 and 0 < C < ∞ such that for 0 < h < h0,

∥∥Q(z)−1
∥∥

L2(X)→L2(X)
≤ C

log(1/h)

h
.(1.5)

If ϕ ∈ C∞
c (X) is supported away from γ, then

∥∥Q(z)−1ϕ
∥∥

L2(X)→L2(X)
≤ C

√
log(1/h)

h
.(1.6)

In order to apply the results of Theorems 1 and 2 to the Main Theorem, we
observe that for A as in the statement of the Main Theorem we have Q(0)A =
P (h)A microlocally and apply a commutator argument.

This note is organized as follows. §2 recalls basic facts about h-pseudodifferential
operators on manifolds. This is followed in §3 with a review of some standard results
from the theory of h-Fourier Integral Operators. In §4 we present some symplectic
geometry and prove the principal symbol can be put into a normal form in the case
all the eigenvalues of dS(0) are distinct. §5 contains the proof of Theorem 1 in
the case of distinct eigenvalues, then re-examines the normal form of the principal
symbol to show how it may be extended to the case when the eigenvalues are not
distinct, and contains the details of the more general case of Theorem 1. Finally,
in §6 we prove Theorem 2 and the Main Theorem. In §7 we follow a suggestion of
M. Hitrik to apply the techniques of §4-6 to the damped wave equation.

The impetus for this paper came when M. Zworski suggested generalizing results
from the appendix of [BuZw], as well as correcting a mistake which was discovered
by J.-F. Bony, S. Fujiie, T. Ramond, and M. Zerzeri (see [BFRZ] for their closely
related work). This paper generalizes the statements of the theorems from the case
of real hyperbolic trajectories to complex hyperbolic or loxodromic trajectories as
well as correcting the mistake.

Acknowledgements: The author would like to thank Maciej Zworski for much
help and support during the writing of this paper, Alan Weinstein and Frédéric
Naud for helpful conversations, as well as the NSF for partial support. He would
like to thank Michael Hitrik for comments on an early draft and suggesting Section
7, and Laurent Thomann and Steve Zelditch for careful reading of an early draft of
this paper.

2. Preliminaries

This section contains some basic definitions and results from semiclassical and
microlocal analysis which we will be using throughout the paper. This is essentially
standard, but we include it for completeness. We will follow the presentation in
[BuZw], §2. Let X be a smooth, compact manifold. We will be operating on
half-densities,

u(x)|dx| 12 ∈ C∞
(
X,Ω

1

2

X

)
,

with the informal change of variables formula

u(x)|dx| 12 = v(y)|dy| 12 , for y = κ(x) ⇔ v(κ(x))|κ′(x)| 12 = u(x).
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By symbols on X we mean

Sk,m
(
T ∗X,Ω

1

2

T∗X

)
:=

=
{
a ∈ C∞(T ∗X × (0, 1],Ω

1
2

T∗X) :
∣∣∣∂α

x ∂
β
ξ a(x, ξ;h)

∣∣∣ ≤ Cαβh
−m〈ξ〉k−|β|

}
.

There is a corresponding class of pseudodifferential operators Ψk,m
h (X,Ω

1

2

X ) acting
on half-densities defined by the local formula (Weyl calculus) in Rn:

Op w
h (a)u(x) =

1

(2πh)n

∫ ∫
a

(
x+ y

2
, ξ;h

)
ei〈x−y,ξ〉/hu(y)dydξ.

We will occasionally use the shorthand notations aw := Op w
h (a) and A := Op w

h (a)
when there is no ambiguity in doing so.

We have the principal symbol map

σh : Ψk,m
h

(
X,Ω

1

2

X

)
→ Sk,m

/
Sk,m−1

(
T ∗X,Ω

1

2

T∗X

)
,

which gives the left inverse of Op w
h in the sense that

σh ◦ Op w
h : Sk,m → Sk,m/Sk,m−1

is the natural projection. Acting on half-densities in the Weyl calculus, the principal
symbol is actually well-defined in Sk,m/Sk,m−2, that is, up to O(h2) in h (see, for
example [EvZw] Appendix D).

We will use the notion of wave front sets for pseudodifferential operators on

manifolds. If a ∈ Sk,m(T ∗X,Ω
1
2

T∗X ), we define the singular support or essential
support for a:

ess-supp ha ⊂ T ∗X
⊔

S
∗X,

where S∗X = (T ∗X \ {0})/R+ is the cosphere bundle (quotient taken with respect
to the usual multiplication in the fibers), and the union is disjoint. ess-supp ha is
defined using complements:

ess-supp ha :=

= {
{

(x, ξ) ∈ T ∗X : ∃ε > 0, ∂α
x ∂

β
ξ a(x

′, ξ′) = O(h∞), d(x, x′) + |ξ − ξ′| < ε
}

⋃
{{(x, ξ) ∈ T ∗X \ 0 : ∃ε > 0, ∂α

x ∂
β
ξ a(x

′, ξ′) = O(h∞〈ξ〉−∞),

d(x, x′) + 1/|ξ′| + |ξ/|ξ| − ξ′/|ξ′|| < ε}/R+.

We then define the wave front set of a pseudodifferential operator A ∈ Ψk,m
h (X,Ω

1
2

X ):

WFh (A) := ess-supp h(a), for A = Op w
h (a).

Finally for distributional half-densities u ∈ C∞((0, 1]h,D′(X,Ω
1
2

X )) such that there

is N0 so that hN0u is bounded in D′(X,Ω
1

2

X), we can define the semiclassical wave
front set of u, again by complement:

WFh (u) :=

= {{(x, ξ) : ∃A ∈ Ψ0,0
h , with σh(A)(x, ξ) 6= 0,

and Au ∈ h∞C∞((0, 1]h, C∞(X,Ω
1
2

X))}.
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For A = Op w
h (a) and B = Op w

h (b), a ∈ Sk,m, b ∈ Sk′,m′

we have the composition
formula (see, for example, [DiSj])

A ◦B = Op w
h (a#b) ,(2.1)

where

Sk+k′,m+m′ 3 a#b(x, ξ) := e
ih
2

ω(Dx,Dξ;Dy ,Dη) (a(x, ξ)b(y, η))
∣∣∣

x=y

ξ=η

,(2.2)

with ω the standard symplectic form.
We will need the definition of microlocal equivalence of operators. Suppose

T : C∞(X,Ω
1
2

X) → C∞(X,Ω
1
2

X ) and that for any seminorm ‖ · ‖1 on C∞(X,Ω
1
2

X)

there is a second seminorm ‖ · ‖2 on C∞(X,Ω
1
2

X) such that

‖Tu‖1 = O(h−M0)‖u‖2

for some M0 fixed. Then we say T is semiclassically tempered. We assume for the
rest of this paper that all operators satisfy this condition. Let U, V ⊂ T ∗X be
open precompact sets. We think of operators defined microlocally near V × U as
equivalence classes of tempered operators. The equivalence relation is

T ∼ T ′ ⇐⇒ A(T − T ′)B = O(h∞) : D′
(
X,Ω

1
2

X

)
→ C∞

(
X,Ω

1
2

X

)

for any A,B ∈ Ψ0,0
h (X,Ω

1
2

X) such that

WFh (A) ⊂ Ṽ , WFh (B) ⊂ Ũ , with Ṽ , Ũ open and

V b Ṽ b T ∗X, U b Ũ b T ∗X.

In the course of this paper, when we say P = Q microlocally near U × V , we mean
for any A, B as above,

APB − AQB = OL2→L2 (h∞) ,

or in any other norm by the assumed precompactness of U and V . Similarly, we
say B = T−1 on V ×V if BT = I microlocally near U×U and TB = I microlocally
near V × U .

For this paper, we will need the following semiclassical version of Beals’s Theorem
(see [DiSj] for a proof). Recall for operators A and B, the notation ad BA is defined
as

ad BA = [B,A] .

Theorem (Beals’s Theorem). Let A : S → S ′ be a continuous linear operator.
Then A = Op w

h (a) for a symbol a ∈ S0,0 if and only if for all N ∈ N and all linear
symbols l1, . . . lN ,

ad Op w
h

(l1) ◦ adOp w
h

(l2) ◦ · · · ◦ ad Op w
h

(lN )A = O(hN )L2→L2 .

The following lemma (given more generally in [BoCh]) will be used in the proof of
Theorem 1. We include a sketch of the proof from [SjZw2] here for completeness. It
is easiest to phrase in terms of order functions. A smooth functionm ∈ C∞(T ∗X; R)
is called an order function if it satisfies

m(x, ξ) ≤ Cm(y, η) 〈dist (x− y) + |ξ − η|〉N

for some N ∈ N. We say a ∈ S l(m) if

|∂αa| ≤ Cαh
−lm.
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If l = 0, we write S(m) := S0(m).

Lemma 2.1. Let m be an order function, and suppose G ∈ C∞(T ∗X; R) satisfies

G(x, ξ)− log (m(x, ξ)) = O(1),(2.3)

and

∂α
x ∂

β
ξG(x, ξ) = O(1) for (α, β) 6= (0, 0).(2.4)

Then for Gw = Op w
h (G) and |t| sufficiently small,

exp(tGw) = Op w
h (bt)

for bt ∈ S(mt). Here etGw

is defined as the unique solution to the ordinary differ-
ential equation

{
∂t (U (t)) −GwU (t) = 0
U (0) = id .

Sketch of Proof. The conditions on G (2.3) and (2.4) are equivalent to saying etG ∈
S(mt). We will compare exp tGw and Op w

h (exp tG).

Claim 2.2. Set U (t) := Op w
h (etG) : S → S. For |t| < ε0, U (t) is invertible and

U (t)−1 = Op w
h (bt) for bt ∈ S(m−t), where ε0 depends only on G.

Proof of Claim. Using the composition law, we see U (−t)U (t) = id + Op w
h (Et),

with Et = O(t). Hence id + Op w
h (Et) is invertible and using Beals’s Theorem, we

get ( id + Op w
h (Et))

−1 = Op w
h (ct) for ct ∈ S(1). Thus Op w

h (ct)U (−t)U (t) = id ,
so

U (t)−1 = Op w
h (ct# exp(−tG)) ,

and subsequently bt ∈ S(m−t). �

Now observe that

d

dt
U (−t) = −Op w

h (G exp(−tG)) , and U (−t)Gw = Op w
h

(
e−tG#G

)
,

so that

d

dt

(
U (−t)etGw

)
=(2.5)

= −Op w
h (G exp(−tG)) etGw

+ Op w
h

(
e−tG#G

)
etGw

= Op w
h (At)e

tGw

,

for At ∈ S(m−t). To see (2.5), recall that by the composition law,

e−tG#G = e−tGG+ (terms with G derivatives) .

Then the first terms in (2.5) will cancel and the remaining terms will all involve at
least one derivative of G, which is then bounded by (2.4).

Set C(t) := −Op w
h (At)U (−t)−1. Claim 2.2 implies C(t) = Op w

h (ct) for a family
ct ∈ S(1). The composition law implies ct depends smoothly on t. Then

(
∂

∂t
+ C(t)

)(
U (−t)etGw

)
= Op w

h (At)e
tGw − Op w

h (At)e
tGw

= 0,

so we have reduced the problem to proving the following claim.
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Claim 2.3. Suppose C(t) = Op w
h (ct) with ct ∈ S(1) depending smoothly on

t ∈ (−ε0, ε0). If Q(t) solves

{ (
∂
∂t

+ C(t)
)
Q(t) = 0,

Q(0) = Op w
h (q), with q ∈ S(1),

then Q(t) = Op w
h (qt) with qt ∈ S(1) depending smoothly on t ∈ (−ε0, ε0).

Proof of Claim. The Picard existence theorem for ODEs implies Q(t) exists and is
bounded on L2. We want to use Beals’s Theorem to show Q(t) is actually a quan-
tized family of symbols. Let l1, . . . , lN be linear symbols. We will use induction to
show that for any N and any choice of the lj , adOp w

h
(l1) ◦ · · · ◦ adOp w

h
(lN )Q(t) =

O(hN )L2→L2 . Since we are dealing with linear symbols, we take h = 1 for conve-
nience. First note

d

dt
ad Op w

h
(l1) ◦ · · · ◦ ad Op w

h
(lN )Q(t) + ad Op w

h
(l1) ◦ · · · ◦ adOp w

h
(lN )

· (C(t)Q(t)) = 0

For the induction step, assume ad Op w
h

(l1) ◦ · · ·◦ad Op w
h

(lk)Q(t) = O(1) is known for
k < N and observe

ad Op w
h

(l1) ◦ · · · ◦ ad Op w
h

(lN ) (C(t)Q(t)) =

= C(t)adOp w
h

(l1) ◦ · · · ◦ ad Op w
h

(lN )Q(t) + R(t),

where R(t) is a sum of terms of the form Ak(t)ad Op w
h

(l1) ◦ · · · ◦ ad Op w
h

(lk)Q(t) for

each k < N and Ak(t) = Op w
h (ak(t)) with ak(t) ∈ S(1). Set Q̃(t) = ad Op w

h
(l1) ◦

· · · ◦ ad Op w
h

(lN )Q(t), and note that Q̃ solves

{ (
∂
∂t

+ C(t)
)
Q̃(t) = −R(t),

Q̃(0) = O(1)L2→L2 .

Since R(t) = O(1)L2→L2 by the induction hypothesis, Picard’s theorem implies

Q̃(t) : L2 → L2 as desired. �

�

We will need to review some basic facts about the calculus of symbols with two
parameters. We will only use symbol spaces with two parameters in the context
of microlocal estimates, in which case we may assume we are working in an open
subset of R2n. We define the following spaces of symbols with two parameters:

Sk,m, em
(
R

2n
)

:=

=
{
a ∈ C∞ (

R
2n × (0, 1]2

)
:

∣∣∣∂α
x ∂

β
ξ a(x, ξ;h, h̃)

∣∣∣ ≤ Cαβh
−mh̃− em〈ξ〉k−|β|

}
.
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For the applications in this paper, we assume h̃ > h and define the scaled spaces:

Sk,m, em
δ

(
R

2n
)

:=

=

{
a ∈ C∞ (

R
2n × (0, 1]2

)
:

∣∣∣∂α
x ∂

β
ξ a(x, ξ;h, h̃)

∣∣∣ ≤ Cαβh
−mh̃− em

(
h̃

h

)δ(|α|+|β|)

〈ξ〉k−|β|
}
.

As before, we have the corresponding spaces of semiclassical pseudodifferential op-

erators Ψk,m, em and Ψk,m, em
δ , where we will usually add a subscript of h or h̃ to

indicate which parameter is used in the quantization. The relationship between Ψh

and Ψh̃ is given in the following lemma.

Lemma 2.4. Let a ∈ Sk,m,m̃
0 , and set

b(X,Ξ) = a

((
h/h̃

) 1
2

X,
(
h/h̃

) 1
2

Ξ

)
∈ Sk,m,m̃

− 1

2

.

There is a linear operator Th,h̃, unitary on L2, and an operator such that

Op w
h̃
(b)Th,h̃u = Th,h̃Op w

h (a)u.

Proof. For u ∈ L2(Rn), define Th,h̃ by

Th,h̃u(X) :=
(
h/h̃

)n
4

u

((
h/h̃

) 1

2

X

)
.(2.6)

We see immediately that Th,h̃ conjugates operators aw(x, hDx) and bw(X, h̃DX ).
�

We have the following microlocal commutator lemma.

Lemma 2.5. Suppose a ∈ S−∞,0,0
0 , b ∈ S−∞,m, em

− 1
2

, and h̃ > h.

(a) If A = Op w
h̃
(a) and B = Op w

h̃
(b),

[A,B] =
h̃

i
Op w

h̃
({a, b}) + O

(
h3/2h̃3/2

)
.

(b) More generally, for each l > 1,

ad l
AB = OL2→L2

(
hh̃l−1

)
.

Proof. Without loss of generality, m = m̃ = 0, so for (a) we have from the Weyl
calculus:

[A,B] =
h̃

i
Op w

h̃
({a, b}) + h̃3O


 ∑

|α|=|β|=3

∂αa∂βb


 ,

since the second order term vanishes in the Weyl expansion of the commutator.
Note ∂αa is bounded for all α, and observe for |β| = 3,

h̃3∂βb = h̃3O
(
h3/2h̃−3/2

)
.

For part (b) we again assume m = m̃ = 0, and we observe that for l > 1 we no
longer have the same gain in powers of h as in part (a). This follows from the



10 HANS CHRISTIANSON

fact that the h̃-principal symbol for the commutator [A, [A,B]], −ih̃{a,−ih̃{a, b}},
satisfies

−ih̃{a,−ih̃{a, b}} = −h̃2
(
∂Ξa∂X (∂Ξa∂Xb− ∂Xa∂Ξb)(2.7)

−∂Xa∂Ξ (∂Ξa∂Xb− ∂Xa∂Ξb)
)

∈ S−∞,−1,−1
0 ,(2.8)

since {a, b} involves products of derivatives of both a and b.
For general l > 1, assume

σh̃

(
ad l

AB
)
∈ S0,−1,1−l

0

and a calculation similar to (2.7-2.8) finishes the induction. �

3. h-Fourier Integral Operators

In this section we review some facts about h-Fourier Integral Operators (h-FIOs).
See [Dui] for a comprehensive introduction to general FIOs without h, or [EvZw],
§10.1 with the addition of the h parameter. For this note, we are only interested
in a special class of h-FIOs, namely those associated to a symplectomorphism. In
order to motivate this, suppose f : X → Y is a diffeomorphism. Then we write

f∗u(x) = u(f(x)) =
1

(2πh)n

∫
ei〈f(x)−y,ξ〉/hu(y)dydξ,

and f∗ : C∞(Y ) → C∞(X) is an h-FIO associated to the nondegenerate phase
function ϕ = 〈f(x)−y, ξ〉. We recall the notation from [Dui]: ifA : C∞

c (Y ) → D′(X)
is a continuous mapping with distributional kernel KA ∈ D′(X × Y ),

WFh
′(A) = {((x, ξ), (y, η)) ∈ (T ∗X × T ∗Y ) \ 0 :

(x, y; ξ,−η) ∈ WFh (KA)}.
In this notation, we note

WFh
′f∗ ⊂

{
((x, ξ), (y, η)) : y = f(x), ξ = tDxf · η

}
,

which is the graph of the induced symplectomorphism

κ(x, ξ) = (f(x), ( tDxf)
−1(ξ)).

To continue, we follow [SjZw], and let A(t) be a smooth family of pseudodiffer-
ential operators: A(t) = Op w

h (a(t)) with

a(t) ∈ C∞ ([−1, 1]t;S−∞,0 (T ∗X)
)
,

such that for each t, WFh (A(t)) b T ∗X. Let U (t) : L2(X) → L2(X) be defined by
{
hDtU (t) + U (t)A(t) = 0,

U (0) = U0 ∈ Ψ0,0
h (X),

(3.1)

where Dt = −i∂/∂t as usual. If we let a0(t) be the real-valued h-principal symbol
of A(t) and let κ(t) be the family of symplectomorphisms defined by

{
d
dt
κ(t)(x, ξ) = (κ(t))∗

(
Ha0(t)(x, ξ)

)
,

κ(0)(x, ξ) = (x, ξ),

for (x, ξ) ∈ T ∗X, then U (t) is a family of h-FIOs associated to κ(t). We have the
following well-known theorem of Egorov (see, for example [EvZw], §10.1).



NON-CONCENTRATION 11

Theorem (Egorov’s Theorem). Suppose B ∈ Ψk,m
h (X), and U (t) defined as above.

Suppose further that U0 in (3.1) is elliptic (σh(U0) ≥ c > 0). Then there exists a
smooth family of pseudodifferential operators V (t) such that

{
σh (V (t)BU (t)) = (κ(t))

∗
σh(B),

V (t)U (t) − I, U (t)V (t) − I ∈ Ψ−∞,−∞
h (X).

(3.2)

Proof. As U0 is elliptic, there exists an approximate inverse V0, such that U0V0 −
I, V0U0 − I ∈ Ψ−∞,−∞

h . Let V (t) solve
{
hDtV (t) −A(t)V (t) = 0,

V (0) = V0.

Write B(t) = V (t)BU (t), so that

hDtB(t) = A(t)V (t)BU (t) − V (t)BU (t)A(t) = [A(t), B(t)]

modulo Ψ−∞,−∞
h . But the principal symbol of [A(t), B(t)] is

σh ([A(t), B(t)]) =
h

i
{σh(A(t)), σh(B(t))} =

h

i
Ha0(t)σh(B(t)),

so (3.2) follows from the definition of κ(t). �

Let U := U (1), and suppose the graph of κ is denoted by C. Then we introduce
the standard notation

U ∈ I0
h(X ×X;C ′), with C ′ = {(x, ξ; y,−η) : (x, ξ) = κ(y, η)} ,

meaning U is the h-FIO associated to the graph of κ. The next few results when
taken together will say that locally all h-FIOs associated to symplectic graphs are
of the same form as U (1). First a well-known lemma.

Lemma 3.1. Suppose κ : neigh (0, 0) → neigh (0, 0) is a symplectomorphism fixing
(0, 0). Then there exists a smooth family of symplectomorphisms κt fixing (0, 0)
such that κ0 = id and κ1 = κ. Further, there is a smooth family of functions gt

such that

d

dt
κt = (κt)∗Hgt

.

The proof of Lemma 3.1 is standard, but we include a sketch here, as it will be
used in the proof of Proposition 4.1 (see [EvZw] §10.1 for details).

Sketch of Proof. First suppose K : R2n → R2n is a linear symplectic transforma-
tion. Write the polar decomposition of K, K = QP with Q orthogonal and P
positive definite. It is standard that K symplectic implies Q and P are both sym-
plectic as well. Identify R2n with Cn on which Q is unitary. Write Q = exp iB for
B Hermitian and P = expA for A real symmetric and JA +AJ = 0, where

J :=

(
0 −I
I 0

)

is the standard matrix of symplectic structure on R2n. Then Kt = exp(itB) exp(tA)
satisfies K0 = id and K1 = K.

In the case κ is nonlinear, set K = ∂κ(0, 0) and choose Kt such that K0 = id
and K 1

2
= K. Then set

κ̃t(x, ξ) =
1

t
κ(t(x, ξ)),
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and note that κ̃t satisfies κ̃0 = K, κ̃1 = κ. Rescale κ̃t in t, so that κ̃t ≡ K near 1/2
and κ̃1 = κ. Rescale Kt so that K0 = id and Kt ≡ K near 1/2. Then κt is defined
for 0 ≤ t ≤ 1 by taking Kt for 0 ≤ t ≤ 1/2 and κ̃t for 1/2 ≤ t ≤ 1.

To show d
dtκt = (κt)∗Hgt

, set Vt = d
dtκt. Cartan’s formula then gives for ω the

symplectic form

LVt
ω = dωyVt + d(ωyVt),

but LVt
ω = d

dt
κ∗tω = 0 since κt is symplectic for each t. Hence ωyVt = dgt for some

smooth function gt by the Poincaré lemma, in other words, Vt = (κt)∗Hgt
. �

We have the following version of Egorov’s theorem.

Proposition 3.2. Suppose U is an open neighbourhood of (0, 0) and κ : U → U is
a symplectomorphism fixing (0, 0). Then there is a bounded operator F : L2 → L2

such that for all A = Op w
h (a),

AF = FB microlocally on U × U,

where B = Op w
h (b) for a Weyl symbol b satisfying

b = κ∗a+ O(h2).

F is microlocally invertible in U × U and F−1AF = B microlocally in U × U .

Proposition 3.2 is a standard result, however we include a proof as we will be
using it for the proof of Theorem 3.

Proof. For 0 ≤ t ≤ 1 let κt be a smooth family of symplectomorphisms satisfying
κ0 = id , κ1 = κ, and let gt satisfy d

dtκt = (κt)∗Hgt
. Let Gt = Op w

h (gt), and solve
the following equations

{
hDtF (t) + F (t)G(t) = 0, (0 ≤ t ≤ 1)

F (0) = I,
{
hDtF̃ (t) −G(t)F̃ (t) = 0, (0 ≤ t ≤ 1)

F̃ (0) = I.

Then F (t), F̃ (t) = O(1) : L2 → L2 and

hDt

(
F (t)F̃ (t)

)
= −F (t)G(t)F̃ (t) + F (t)G(t)F̃ (t) = 0,

so F (t)F̃ (t) = I for 0 ≤ t ≤ 1. Similarly, E(t) = F̃F − I satisfies

hDtE(t) = G(t)F̃ (t)F (t) − F̃ (t)F (t)G(t) = [G(t), E(t)](3.3)

with E(0) = 0. But equation (3.3) has unique solution E(t) ≡ 0 for the initial

condition E(0) = 0. Hence F̃ (t)F (t) = I microlocally.

Now set B(t) = F̃ (t)AF (t). We would like to show B(t) = Op w
h (bt), for bt =
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κ∗ta+ O(h2). Set B̃(t) = Op w
h (κ∗ta). Then

hDtB̃(t) =
h

i
Op w

h

(
d

dt
κ∗ta

)

=
h

i
Op w

h ({gt, κ
∗
ta})

=
[
G(t), B̃(t)

]
+E1(t),

where E1(t) = Op w
h (e1(t)) for e1(t) a smooth family of symbols. Note if we take

gt#(κ∗ta) − (κ∗t a)#gt, the composition formula (2.2) implies the h2 term vanishes
for the Weyl calculus since ω2 is symmetric while

gt(x, ξ)κ
∗
ta(y, η) − κ∗ta(x, ξ)gt(y, η)

is antisymmetric. Thus E1(t) ∈ Ψ0,−3
h , since we are working microlocally. We

calculate

hDt

(
F (t)B̃(t)F̃ (t)

)
=(3.4)

= −F (t)G(t)B̃(t)F̃ (t) + F (t)
([
G(t), B̃(t)

]
+ E1(t)

)
F̃ (t)(3.5)

+F (t)B̃(t)G(t)F̃ (t)

= F (t)E1(t)F̃ (t)(3.6)

= O(h3).

Integrating in t and dividing by h we get

F (t)B̃(t)F̃ (t) = A +
i

h

∫ t

0

F (s)E1(s)F̃ (s)ds = A+ O(h2),(3.7)

so that B̃(t) −B(t) = O(h2).
We will construct families of pseudodifferential operators Bk(t) so that for each

m

B(t) = B̃(t) +B1(t) + · · ·+ Bm(t) + O(hm+2).(3.8)

Let

ẽ1(t) = (κt)
∗
∫ t

0

(κ−1
s )∗e1(s)ds,

and set Ẽ1(t) = Op w
h (ẽ1(t)). Observe

hDtẼ1 =
[
G(t), Ẽ1

]
+
h

i
(E1(t) + E2(t)) ,

where E2(t) ∈ Ψ0,−4
h by the Weyl calculus, since [G, Ẽ1] = O(h4). Then as in

(3.4-3.6)

hDt

(
F (t)Ẽ1(t)F̃ (t)

)
= −F (t)

[
G(t), Ẽ1(t)

]
F̃ (t) + F (t)hDt

(
Ẽ1(t)

)
F̃ (t)

=
h

i

(
F (t)E1(t)F̃ (t) + F (t)E2(t)F̃ (t)

)
.

Integrating in t gives

F (t)Ẽ1(t)F̃ (t) =

∫ t

0

F (s)E1(s)F̃ (s)ds +
i

h

∫ t

0

F (s)E2(s)F̃ (s)ds,
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and substituting in (3.7) gives

B̃(t) − B(t) =
i

h
Ẽ1(t) − F̃ (t)

(
i

h

∫ t

0

F (s)E2(s)F̃ (s)ds

)
F (t)

=
i

h
Ẽ1(t) + O(h3).

Setting B1(t) = iẼ1(t)/h and continuing inductively gives Bk(t) satisfying (3.8).
Let l be a linear symbol, and L = Op w

h (l). Then

ad L(B̃ −B) =
[
B̃ −B,L

]
= O(h2).

Fix N . From (3.8) we can choose B1, . . . , BN so that replacing B̃ with B̃ + B1 +
· · ·+ BN , we have for l1, . . . , lN linear symbols, Lk = Op w

h (lk),

ad L1
◦ · · · ◦ ad LN

(B̃ − B) = O(hN+2),

so Beals’s Theorem implies B(t) = Op w
h (b(t)) for b(t) = κ∗ta+ O(h2). �

The next proposition is essentially a converse to Proposition 3.2.

Proposition 3.3. Suppose U = O(1) : L2 → L2 and for all pseudodifferential

operators A,B ∈ Ψ0,0
h (X) such that σh(B) = κ∗σh(A), AU = UB microlocally

near (ρ0, ρ0), where κ : neigh (ρ0, ρ0) → neigh (ρ0, ρ0) is a symplectomorphism
fixing (ρ0, ρ0). Then U ∈ I0

h(X ×X;C ′) microlocally near (ρ0, ρ0).

Proof. Choose κt a smooth family of symplectomorphisms such that κ0 = id ,
κ1 = κ, and κt(ρ0) = ρ0. Choose a(t) a smooth family of functions satisfying
d
dtκt = (κt)∗Ha(t), and let A(t) = Op w

h (a(t)). Let U (t) be a solution to
{
hDtU (t) − U (t)A(t) = 0,

U (1) = U,

for 0 ≤ t ≤ 1. Next let A and B satisfy the assumptions of the proposition. Since
AU = UB, we can find V (t) satisfying

{
AU (t)V (t) = U (t)BV (t),

V (0) = id .
(3.9)

By Egorov’s theorem, the right hand side of (3.9) is equal to

U (t)V (t)
(
V (t)−1BV (t)

)
= U (t)V (t)A + O(h).

Setting t = 0, we see [U (0), A] = O(h). Applying the same argument to [U (t), A]

and another choice of Ã, B̃ satisfying the hypotheses of the proposition yields by
induction,

ad A1
◦ · · · ◦ ad AN

U (0) = O(hN )(3.10)

for any choice of A1, . . . , AN ∈ Ψ0,0
h (X). Since we are only interested in what U (t)

looks like microlocally, (3.10) is sufficient to apply Beals’s Theorem and conclude

that U (0) ∈ Ψ0,0
h (X). Thus U (t) and hence U (1) = U is in I0

h(X × X;C ′) for the
twisted graph

C ′ = {(x, ξ, y,−η) : (y, η) = κ(x, ξ)} .
�

Using the following more general version of the Poincaré lemma from [Wei2], we
will be able to generalize Proposition 3.2 to a neighbourhood of a periodic orbit.
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Lemma 3.4. Let N ⊂ T ∗X be a closed submanifold, and assume (x, ξ) ∈ N
implies (x, 0) ∈ N . Then if ω is a closed k-form such that ω|N = 0, then there is
a (k − 1)-form I(ω) in a neighbourhood of N such that ω = dI(ω).

Proof. Let ms : T ∗X → T ∗X, ms : (x, ξ) 7→ (x, sξ), be multiplication by s in the
fibres, and define

Xs =

(
d

dr
mr

)∣∣∣∣
r=s

.

That is, in coordinates,

Xs =
1

s

∑

j

ξj
∂

∂ξj

is just 1/s times the radial vector field. Then

d

dr
(m∗

rω)

∣∣∣∣
r=s

= m∗
s

(
Xsydω

)
+ d

(
m∗

s(Xyω)

)
,

and integrating in r gives

ω −m∗
0ω = I(dω) + dI(ω)

for

I(ω) =

∫ 1

0

m∗
r(Xryω)dr.

Now ω|N = 0 and dω = 0 finishes the proof. �

Theorem 3. Suppose N ⊂ T ∗X is a closed submanifold such that (x, ξ) ∈ N im-
plies (x, 0) ∈ N , and assume κ : neigh (N ) → κ(neigh (N )) is a symplectomorphism
which is smoothly homotopic in the symplectic group to identity on N . Then there
is a bounded linear operator F : L2(neigh (N )) → L2(κ(neigh (N ))) such that for
all A = Op w

h (a),

AF = FB microlocally on neigh (N ) × κ(neigh (N )),

where B = Op w
h (b) for a Weyl symbol b = κ∗a+ O(h2). Further, F is microlocally

invertible and F−1AF = B in N × κ(N ).

Proof. The proof will follow from the proof of Proposition 3.2. Let κt be the
homotopy in the Proposition, κ0 = id and κ1 = κ. We need only verify that κt is
generated by a Hamiltonian. Set Vt = d

dtκt, and calculate

0 =
d

dt
κ∗tω = LVt

ω = Vtydω + d(Vtyω).

Hence λt = Vtyω is closed and further λt|N = 0 so we may apply Lemma 3.4 to

obtain a 0-form I(λt) so that

dI(λt) = λt,

or

Vt = HI(λt).

�
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We will make use of the following proposition (see [EvZw] §10.5 for a proof).

Proposition 3.5. Let P ∈ Ψk,0
h (X) be a semiclassical operator of real principal

type (p = σh(P ) is real and independent of h), and assume dp 6= 0 whenever p = 0.
Then for any ρ0 ∈ {p−1(0)}, there exists a symplectomorphism κ : T ∗X → T ∗

R
n

defined from a neighbourhood of ρ0 to a neighbourhood of (0, 0) and an h-FIO T
associated to its graph such that

(i) κ∗ξ1 = p,
(ii) TP = hDx1

T microlocally near (ρ0; (0, 0)),
(iii) T−1 exists microlocally near ((0, 0); ρ0).

4. Symplectic Geometry and Quadratic Forms

We now return to the setup of the introduction. Let P (h) satisfy all the as-
sumptions from §1. The main tool at our disposal is to use symplectomorphisms to
transform the Weyl principal symbol into a different Weyl principal symbol which
is in a more tractible form. Then by Propositions 3.2 and 3.3, any estimates we
prove about the quantization of the transformed principal symbol will hold for the
original operator modulo O(h2).

It is classical (see, for example [AbMa]) that using our assumptions on p, the
Implicit Function Theorem guarantees that there is an ε0 > 0 such that for ε ∈
[−ε0, ε0], the energy surface {p−1(ε)} is regular and contains a closed loxodromic
orbit γε. Further,

γ :=
⋃

−ε0≤ε≤ε0

γε

is a smooth, 2-dimensional symplectic manifold diffeomorphic to S1 × [−ε0, ε0] ⊂
T ∗S1. Choose symplectic coordinates (t, τ, x, ξ) in a neighbourhood of γ so that γ
is the image of the unit circle, S1 3 t 7→ γ(t), t parametrizes γε, and γ = {t, 0; 0, 0}.
In [AbMa] it is shown that S = {t = 0} is a contact manifold with the contact form
ω̃(x,ξ) = i∗ω, where i : S ↪→ X is the inclusion. Then the Poincaré map preserves
p and ω̃, modulo a term encompassing the period shift for ε ∈ [−ε0, ε0] different
from zero and (x, ξ) 6= (0, 0). This motivates our next change of variables. Similar
to [Sjö4], we observe that τ depends only on the energy surface in which γε lies:
τ = g(ε). Hp is tangent to the energy surface {p−1(ε)} for each ε ∈ [−ε0, ε0], so
that

∂tp(t, τ, x, 0) = ∂tp(t, τ, 0, ξ) = 0, and

∂xp(t, τ, 0, 0) = 0, ∂ξp(t, τ, 0, 0) = 0,

so that

p(t, τ, 0, 0) = f(τ ) and p(t, 0, x, ξ) = f(0) + Ot(x
2 + ξ2).

Thus, there exists a smooth nonvanishing function a(t, τ, x, ξ) defined in a neigh-
bourhood of γ such that

a(t, τ, x, ξ)p(t, τ, x, ξ) = f(τ ) + Ot(x
2 + ξ2).

Since the Hamiltonian vector field of p, Hp is tangent to {p = 0}, we can choose
a Poincaré section contained in {p = 0}, that is, a 2n− 2 dimensional submanifold
N , transverse to Hp on {p = 0} centered at γ(0). Let S : N → N be the Poincaré
(first return) map near γ(0). Note that ω = dt ∧ dτ + ω̃(x,ξ) is the symplectic
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form on T ∗X in our choice of coordinates, so S preserves the (2n− 2) dimensional
symplectic form ω̃ on N . Thus S is a symplectic mapping N → N , with S(0) = 0.
That γ is loxodromic means none of the eigenvalues of dS(0) lie on the unit circle.
In this section for simplicity we consider only the case where all the eigenvalues are
distinct, (the general case is handled in §5.2). We think of dS(0) as the linearization
of S near 0 ∈ N , with N identified with T0N near 0.

We want to put p into a normal form in a neighbourhood of γ. Inspiration for
this construction comes from [Gui] and [Sjö4]. Let q(ρ) be defined near 0 ∈ N and
quadratic such that dS(0) = expHq. Let κt be a smooth family of symplectomor-
phisms such that κ0 = id while κ1 = S. Then from the proof of Lemma 3.1 we
can find qt(ρ) defined near 0 ∈ N so that

qt(ρ) = q(ρ) + ft(ρ)

with ft(ρ) = Ot(|ρ|3) and

d

dt
κt = (κt)∗Hqt

.

Remark. Here we see the first obstacle to extending these techniques to include
negative real eigenvalues: We want to write dS(0) = expHq for a real quadratic
form q. But this is impossible for some linear symplectic transformations with
negative eigenvalues as the example

dS(0) =

(
−e2 0
0 −e−2

)

shows. Here dS(0) is symplectic, but cannot be written as expHq with q real.
Roughly, negative eigenvalues may be realized only by deforming a family of sym-
plectomorphisms κt through an elliptic component.

Set p̃(s, σ, ρ) = σ+qs(ρ). We will show p and p̃ are equivalent under a symplectic
change of coordinates on the set p−1(0). Then since both p and p̃ have nonvanishing
differentials, we can write

κ∗p = b(t, τ, x, ξ)p̃(4.1)

for a smooth, positive function b and a symplectomorphism κ. Indeed, we claim

exp(tHp)(s, σ, ρ) =
(
s + t, σt(ρ, s, σ), κt+s ◦ κ−1

s (ρ)
)

for some σt(s, σ, ρ), giving (4.1). To see this, set

Φt(s, ρ) :=
(
s + t, κt+s ◦ κ−1

s (ρ)
)
.

We need to check that Φt|N×S1 is a 1-parameter group. We compute

Φt1+t2 |N×S1 (s, ρ) =
(
s+ t1 + t2, κt1+t2+s ◦ κ−1

s (ρ)
)
.

But we check

Φt1 |N×S1 ◦ ΦN×S1 (s, ρ) =

= Φt1 |N×S1

(
s + t2, κt2+s ◦ κ−1

s (ρ)
)

=
(
s + t1 + t2, κt1+t2+s ◦ κ−1

t2+s(κt2+s ◦
(
κt2+s ◦ κ−1

s (ρ)
))
,

so the group law holds. We need only verify that p and p̃ have the same Poincaré
map, so we check:

(
d

dt
Φt|N×S1 (s, ρ)

)∣∣∣∣
t=0

= (1,Hqs
(ρ)) ,
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which is clear. Note this construction depends only on the Poincaré map S and is
unique up to symplectomorphism.

Next we want to examine what form the quadratic part q(ρ) can take. The fact
that S(0) = 0 implies we can write

q(ρ) =
1

2
〈q′′(0)ρ, ρ〉.(4.2)

Now we define the Hamilton matrix B by

q(ρ) =
1

2
ω̃(ρ,Bρ)(4.3)

so that the symplectic transpose of B, eωB, is equal to −B. Note that B is the
matrix representation of Hq, and so has eigenvalues which are the logarithms (with
a suitably chosen branch cut) of the eigenvalues of dS(0). Thus the condition that
γ be loxodromic implies none of the eigenvalues of B have nonzero real part. Recall
that since dS(0) is a symplectic transformation, if µ is an eigenvalue of dS(0), then
so are µ, µ−1, and µ−1. This implies for the corresponding Hamilton matrix B in
(4.3), if λ is an eigenvalue of B, then so are −λ, λ, and −λ. Thus the analysis of B
in the loxodromic, or complex hyperbolic case amounts to analyzing the eigenvalues
in sets of 2 or 4. For this we follow the appendix in [IaSj], and recall for this section
we are assuming the eigenvalues are distinct. There are 2 cases. First, assume
λj > 0 is real. Then −λj is also an eigenvalue. Let ej and fj be the respective
eigenvectors such that ω̃(ej , fj) = 1. Then ej and fj span a real symplectic vector
space of dimension 2. For a point ρ in this vector space, write ρ = xjej + ξjfj .
Then (xj , ξj) are symplectic coordinates, in which qj(ρ), the projection of q onto
the jth coordinates becomes qj(ρ) = λjxjξj. We call the

λjxjξj

the action variables.
Now we would like to see what these actions look like when the eigenvalues have

nonzero imaginary part. Suppose λj is an eigenvalue with Reλj > 0, Imλj > 0.

Then −λj , λj, and −λj are eigenvalues. Let ej , fj , ej , and f j be the respec-

tive eigenvectors. Note ω̃(ej , ej) = ω̃(ej , fj) = ω̃(fj , fj) = 0. Scale fj so that

ω̃(ej , fj) = 1. Then {ej , fj} and {ej , fj} span complex conjugate symplectic vector

spaces of complex dimension 2. Thus {ej , ej, fj, f j} span a symplectic vector space
of complex dimension 4 which is the complexification of a real symplectic vector
space. Write a point ρ in this space in this basis, ρ = zjej +ζjfj +wjej +ηjf j . Then
(zj , ζj, wj, ηj) become symplectic coordinates, in which the projection qj becomes

qj(ρ) = λjzjζj + λjwjηj. Now write

ej =
1√
2

(
e1j + ie2j

)
, fj =

1√
2

(
f1

j − if2
j

)
,

for real ek
j , fk

j . This is a symplectic change of basis, and writing ρ in this basis:

ρ = zjej + ζjfj + wjej + ηjf j =

2∑

k=1

(
xk

j e
k
j + ξk

j f
k
j

)
,

we have

qj(ρ) = Reλj

(
x1

jξ
1
j + x2

jξ
2
j

)
− Imλj

(
x1

jξ
2
j − x2

jξ
1
j

)
.
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This is summarized in the following proposition (using the notation of [IaSj]). Let
nhc be the number of complex hyperbolic eigenvalues µj of dS(0) with |µj| > 1,
and nhr the number of real hyperbolic eigenvalues µj of dS(0) such that µj > 1.
Thus we have 2n− 2 = 4nhc + 2nhr .

Proposition 4.1. Let p ∈ C∞(T ∗X), γ ⊂ {p = 0} as in the introduction, with
the linearized Poincaré map having distinct eigenvalues µj not on the unit circle.
Assume for 1 ≤ j ≤ nhc we have |µj| > 1 and Imµj > 0, and for 2nhc + 1 ≤ j ≤
2nhc + nhr we have µj > 1. Then there exists a neighbourhood, U , of γ in T ∗X,
a smooth positive function b ≥ C−1 > 0 defined in U , and a symplectomorphism
κ : U → κ(U ) ⊂ T ∗S1

(t,τ) × T ∗Rn−1
(x,ξ) such that

κ(γ) = {(t, 0; 0, 0) : t ∈ S
1},

and b(t, τ, x, ξ)p = κ∗(g + r), with

g(t, τ ;x, ξ) =

= τ +

nhc∑

j=1

( Reλj (x2j−1ξ2j−1 + x2jξ2j) − Imλj (x2j−1ξ2j − x2jξ2j−1))(4.4)

+

2nhc+nhr∑

j=2nhc+1

λjxjξj , with 2nhc + nhr = n− 1 and(4.5)

r = O(|x|3 + |ξ|3).
Here λj = log(µj) for |µj| > 1 and Imλj ≥ 0.

Remark. The quadratic form (4.4-4.5) in Proposition 4.1 is the leading part of the
real Birkhoff normal form for a symplectomorphism near a loxodromic fixed point.
With a non-resonance condition and the addition of some higher order “action”
variables (see, for example, [HoZe] and [IaSj]), the error r could be taken to be

r = O(|x|4 + |ξ|4),
or even O(|x|∞ + |ξ|∞).

Remark. We think of p(t, τ, x, ξ) ∈ C∞(R4), p = τ + λxξ, for λ > 0 as our
“model case”. The feature we are going to exploit about this model case is that if
G(t, τ, x, ξ) = 1

2
(x2 − ξ2), then

HpG = λ(x2 + ξ2),(4.6)

which is a positive definite quadratic form. However, the growth of x2−ξ2 will force
us to use instead G(x, ξ) = log(1+x2)−log(1+ξ2). Suppose p = τ+λxξ+x3−ξ3 =
τ + λxξ + O(x3 + ξ3) in a neighbourhood of γ of size ε > 0 as in Proposition 4.1.
Then

HpG = λ
x2

1 + x2
+ λ

ξ2

1 + ξ2
+ 3

ξ2x

1 + x2
+ 3

x2ξ

1 + ξ2
.

Motivated by (4.6), we would like to write this as

HpG = λ
x2

1 + x2
(1 + O(ε)) + λ

ξ2

1 + ξ2
(1 + O(ε)),

which we clearly cannot do in this example.
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As the last remark indicates, in order to deal with the error terms, we will
need a more refined form than that given in Proposition 4.1. Inspiration for this
development, and in particular Proposition 4.3 comes from [GeSj] and [Sjö].

Let {µj} be the eigenvalues of the linearized Poincaré map at γ(0). They come

in pairs µj , µ
−1
j for the real µj and in sets of four µj, µj , µ

−1
j , and µ−1

j for the

complex µj. The Stable/Unstable Manifold Theorem guarantees we will get two n-
dimensional, transversal, flow-invariant sub-manifolds Λ+ and Λ− such that exp tHp

is expanding on Λ+ and contracting on Λ−. Since the Λ± are invariant under the
flow Φt = exp tHp which is symplectic, the symplectic form ω vanishes on the Λ±,
that is, the Λ± are Lagrangian submanifolds.

Lemma 4.2. Assume p is in the form of Proposition 4.1. Then there exists a local
symplectic coordinate system (t, τ, x, ξ) near γ such that Λ+ = {τ = 0, ξ = 0} and
Λ− = {τ = 0, x = 0}.
Proof. We claim the Λ± are orientable and embedded in T ∗S1 × T ∗Rn−1. Since
dS(0) describes how the flow of Hp has acted at time t = 1, we know the evolution
of a tangent frame of Λ± will be described by dS(0). Using the action variables in
Proposition 4.1, we have

dS(0) =

(
A 0
0 B

)

with

A = diag (µ1, µ̄1, . . .µnhc
, µ̄nhc

;µ2nhc+1, . . . , µ2nhc+nhr
),

describing the time 1 evolution of Λ+ and |µj| > 1 for each 1 ≤ j ≤ nhr + nhc by
our choice of coordinates. Similarly,

B = diag (µ−1
1 , µ̄−1

1 , . . .µ−1
nhc

, µ̄−1
nhc

;µ−1
2nhc+1, . . . , µ

−1
2nhc+nhr

)

describes the time 1 evolution of Λ− with |µ−1
j | < 1 for each j. But we’ve assumed

there are no negative real eigenvalues, so detA > 0 implies Λ+ is orientable. Simi-
larly, detB > 0 and Λ− is orientable. Now our assumptions on p mean the flow has
no critical points in a neighbourhood of γ so the Λ± can have no self intersections
and hence are embedded.

Let Λ̃ ⊂ T ∗S1×T ∗Rn−1, Λ̃ = {τ = 0, ξ = 0}. Since Λ+ is a closed, n-dimensional
submanifold of T ∗X, the tubular neighbourhood theorem guarantees there is a dif-
feomorphism f (not necessarily symplectic) taking a neighbourhood U of γ into
itself so that f fixes t and

f(Λ+ ∩ U ) = Λ̃ ∩ U.
Further, since Tγ(t)Λ+ = Tγ(t)Λ̃ for 0 ≤ t ≤ 1, we can choose f satisfying

[
(f−1)∗ω̃

]
γ(t)

= ω̃γ(t), 0 ≤ t ≤ 1.(4.7)

The statement in the lemma about Λ+ now follows directly from the more general

Theorem 4.1 in [Wei2], but we include a proof of this concrete case. We have Λ̃ ⊂
T ∗S1×T ∗Rn−1, a Lagrangian submanifold with two distinct symplectic structures,
ω0 = (f−1)∗ω̃ and the standard symplectic structure ω1 inherited from T ∗S1 ×
T ∗Rn−1. We want to find a diffeomorphism g : U → U such that g(Λ̃) = Λ̃ and
g∗ω1 = ω0.

Set ωs = sω0 + (1 − s)ω1. We have dωs = 0 and ωs|Λ̃ = 0. Note (4.7) implies
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ωs is nondegenerate in a neighbourhood of γ for 0 ≤ s ≤ 1. Let ω̂s : TX → T ∗X

denote the isomorphism generated by ωs, ω̂s : Z 7→ Zyωs. We use the general

Poincaré Lemma 3.4 to obtain a 1-form ϕ = I(ω0 − ω1) so that dϕ = ω0 − ω1 and
set Ys = ω̂−1

s (ϕ). Then ϕ|Λ̃ = 0 implies

Ysyωs = ω̂(Ys)

= ϕ,

so that Ys is tangent to Λ̃. Thus if gs = exp(sYs) for 0 ≤ s ≤ 1 is the integral of

Ys, gs(Λ̃) = Λ̃. We calculate:

d

dr
(g∗rωr)|r=s = g∗s

(
d

dr
ωr

)∣∣∣∣
r=s

+ g∗s

(
d(Ysyωs)

)

= g∗s (ω0 − ω1 + d(−ϕ))

= 0.

Setting g = g1 gives g∗ω1 = ω0 as desired. Now taking g−1 ◦ f gives a diffeomor-
phism of a neighbourhood of γ taking Λ+ to Λ̃ such that g∗ ◦ (f−1)∗ω̃ = ω̃.

After this change of coordinates, we still need to put Λ− in the desired form.
Since Λ− is transversal to Λ+ and all of our transformations so far leave {τ = 0}
invariant, we can write Λ− as a graph over {x = 0}:

Λ− = {(t, 0, x, ξ) : x = g(ξ, t)} .(4.8)

Further, since for each fixed t, (4.8) is Lagrangian and the first de Rham cohomology
group H1

dR({τ = 0, x = 0}) ' H1
dR(Rn−1) vanishes, it is classical that we can write

g(ξ, t) = ∂ξh(ξ, t) for a smooth h(ξ, t) (see, for example, [Lee]). Then we write

Λ− = {(t, 0, x, ξ) : x = ∂ξh(ξ, t)} ,
and observe h must satisfy ∂ξh(0, t) = 0. This determines h up to a constant, which
we take to be 0 so that h(0, t) = 0. Now let b(ξ, t) be a smooth function satisfying
b(ξ, t) = ∂th(ξ, t), and note b(0, t) = 0. Then we perform the following change of
variables: 




t′ = t
τ ′ = τ + b(ξ, t)
x′ = x− ∂ξh(ξ, t)
ξ′ = ξ.

We calculate:

dτ ′ ∧ dt′ + dξ′ ∧ dx′ =


dτ +

∑

j

∂ξj
b(ξ, t)dξj + ∂tb(ξ, t)dt


 ∧ dt

+
∑

j

dξj ∧
(
dxj −

∑

i

∂ξi
∂ξj

h(ξ, t)dξi − ∂t∂ξj
h(ξ, t)dt

)

= dτ ∧ dt+ dξ ∧ dx,
by the symmetry of the Hessian ∂ξi

∂ξj
h(ξ, t). Thus this change of variables is

symplectic and the Lemma is proved. �
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Using the change of variables in Lemma 4.2, we have the following proposition.

Proposition 4.3. Let p ∈ C∞(T ∗X), γ ⊂ {p = 0} as above, with the Poincaré
map having distinct eigenvalues µj not on the unit circle. Then there exists a
neighbourhood, U , of γ in T ∗X, a smooth positive function b ≥ C−1 > 0 defined
in U , a symplectomorphism κ : U → κ(U ) ⊂ T ∗

S
1
(t,τ) × T ∗

R
n−1
(x,ξ), and a smooth,

n× n-matrix valued function Bt such that

κ(γ) = {(t, 0; 0, 0) : t ∈ S
1}, and b(t, τ, x, ξ)p = κ∗g, with

g(t, τ ;x, ξ) = τ + 〈Bt(x, ξ)x, ξ〉,(4.9)

with Bt satisfying

〈Bt(0, 0)x, ξ〉 =

=

nhc∑

j=1

( Reλj (x2j−1ξ2j−1 + x2jξ2j) − Imλj (x2j−1ξ2j − x2jξ2j−1))(4.10)

+

2nhc+nhr∑

j=2nhc+1

λjxjξj .(4.11)

Here λj = log(µj) for |µj| > 1 and Imλj ≥ 0.

Proof. Recall that the Poincaré map S is linear in lowest order, and let dS(0) be the
linearized map. Let q0 satisfy dS(0) = expHq0

. After a linear symplectic change
of variables, q0 can be written in block-diagonal form

q0(x, ξ) = 〈bx, ξ〉

=

nhc∑

j=1

( Reλj (x2j−1ξ2j−1 + x2jξ2j) − Imλj (x2j−1ξ2j − x2jξ2j−1))

+

2nhc+nhr∑

j=2nhc+1

λjxjξj , with 2nhc + nhr = 2n− 2.

According to Lemma 4.2, we may symplectically change variables so Λ+ = {τ =
0, ξ = 0} and Λ− = {τ = 0, x = 0}. The linearization of the Hamiltonian vector
field of p is Hq0

, which implies we have a quadratic form as in the proposition. �

5. Proof of Theorem 1

Proof of Theorem 1 with Distinct Eigenvalues. First we assume P (h) has principal
symbol given by

p(t, τ ;x, ξ) = τ + 〈Bt(x, ξ)x, ξ〉,(5.1)

with Bt satisfying (4.10-4.11) as in Proposition 4.3. Let U be a neighbourhood of
γ, U ⊂ T ∗S1 × T ∗Rn−1, and assume

U ⊂ Uε/2 :=
{

(t, τ, x, ξ) :
(
d(x, x(γ(t)))2 + |ξ − ξ(γ(t))|2 + τ2

) 1

2 <
ε

2

}

for ε > 0. Let ψ0 be a microlocal cutoff function to a neighbourhood of U , that
is, take ψ0 ∈ C∞

c (R2n), ψ0 ≡ 1 on Uε/2 with support in Uε. Then we assume
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throughout that we are working in Uε. With h̃ small (fixed later in the proof), we
do the following rescaling:

X :=
(
h̃/h

)1

2

x, Ξ =
(
h̃/h

)1

2

ξ.(5.2)

and assume for the remainder of the proof that |(X,Ξ)| ≤
(
h̃/h

)1
2

ε. We use the

unitary operator Th,h̃ defined in (2.6) to introduce the second parameter into P (h).

Following [BuZw] we define the operator P̃ (h) by

P̃ (h) = Th,h̃P (h)T−1

h,h̃
,

so that the principal symbol of P̃ (h) is

p̃(t, τ ;X,Ξ) =(5.3)

= τ +

〈
Bt

((
h/h̃

) 1
2

(X,Ξ)

)(
h/h̃

) 1
2

X,
(
h/h̃

) 1
2

Ξ

〉
,

and p̃ ∈ S−∞,0,0

− 1
2

microlocally. We have

∣∣∂α
X,Ξp̃

∣∣ ≤ Cα

(
h/h̃

)|α|/2

(5.4)

for (X,Ξ) ∈ U
(h̃/h)

1
2 ε

by Lemma 2.4.

We will use the following escape function, which we define in the (X,Ξ) coordi-
nates:

G(X,Ξ) :=
1

2

(
log(1 + |X|2) − log(1 + |Ξ|2)

)
.

G satisfies∣∣∣∂α
X∂

β
ΞG(X,Ξ)

∣∣∣ ≤ Cαβ〈X〉−|α|〈Ξ〉−|β|, for (α, β) 6= (0, 0),

and since 〈X〉2〈Ξ〉−2 is an order function, G satisfies the assumptions of Lemma
2.1 so we may construct the family esGw

for sufficiently small s.

Now for |(X,Ξ)| ≤
(
h̃/h

)1
2

ε we have

HepG(X,Ξ) =

=
(
h/h̃

)[〈
BtX,

∂

∂X

〉
−
〈
Bt

∂

∂Ξ
,Ξ

〉]
G(X,Ξ)(5.5)

+
(
h/h̃

) 3
2




n−1∑

j=1

〈
∂

∂Ξj
Bt(·, ·)X,Ξ

〉
∂

∂Xj
G(X,Ξ)


(5.6)

−
(
h/h̃

) 3
2




n−1∑

j=1

〈
∂

∂Xj
Bt(·, ·)X,Ξ

〉
∂

∂Ξj
G(X,Ξ)


 .(5.7)

For s sufficiently small, we define a family of operators

P̃s(h) = e−sGw

P̃ (h)Op w
h̃

(
ψ0

((
h/h̃

) 1
2 •
))

esGw

= exp (−sad Gw) P̃ (h)Op w
h̃

(
ψ0

((
h/h̃

) 1
2 •
))

,(5.8)
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where Op w
h̃

and Gw are quantizations in the h̃-Weyl calculus. Now owing to Lemma

2.5 and (5.4) we have microlocally to leading order in h:

ad k
Gw

(
P̃ (h)Op w

h̃

(
ψ0

((
h/h̃

) 1
2 •
)))

= OL2→L2

(
hh̃k−1

)
,

and in particular,
[
P̃ (h), Gw

]
= −ih̃Op w

h̃
(HepG) + O(h3/2h̃3/2).(5.9)

Now near (0, 0), Bt is positive definite, 〈BtX,X〉 ≥ C−1|X|2, so

〈BtX,X〉−1 ≤ C|X|−2.

Applying this to the errors (5.6-5.7) we get

(
h/h̃

)3
2




n−1∑

j=1

〈
∂

∂Ξj
Bt(·, ·)X,Ξ

〉
∂

∂Xj
G(X,Ξ)


 =

(
h/h̃

) 3
2 |X|2
1 + |X|2O(|Ξ|),

and similarly for (5.7). Adding these to (5.5), we get

HepG =
(
h/h̃

)[ 〈BtX,X〉
1 + |X|2

](
1 +

(
h/h̃

)1
2 O(|Ξ|)

)
(5.10)

+
(
h/h̃

)[〈BtΞ,Ξ〉
1 + |Ξ|2

](
1 +

(
h/h̃

) 1
2O(|X|)

)
.(5.11)

Now we expand Bt in a Taylor series about (0, 0) to get

HepG =

=
(
h/h̃

)[ 〈Bt(0, 0)X,X〉
1 + |X|2 +

(
h/h̃

) 1
2 |X|2
1 + |X|2O(|(X,Ξ)|)

]
·

·
(

1 +
(
h/h̃

)1
2 O(|Ξ|)

)

+
(
h/h̃

)[ 〈Bt(0, 0)Ξ,Ξ〉
1 + |Ξ|2 +

(
h/h̃

) 1
2 |Ξ|2
1 + |Ξ|2O(|(X,Ξ)|)

]
·

·
(

1 +
(
h/h̃

)1
2 O(|X|)

)
,

which can again be written as (5.10-5.11). Recalling that Bt(0, 0) is block diagonal

of the form (4.10-4.11), we get for |(X,Ξ)| ≤
(
h̃/h

) 1
2

ε,

HepG(X,Ξ) =

=




nhc∑

j=1

Reλj

(
X2

2j +X2
2j−1

1 + |X|2 +
Ξ2

2j + Ξ2
2j−1

1 + |Ξ|2

)

(
1 + h̃−

1
2O(ε)

)
(5.12)

+




2nhc+nhr∑

j=2nhc+1

λj

(
X2

j

1 + |X|2 +
Ξ2

j

1 + |Ξ|2

)

(
1 + h̃−

1
2O(ε)

)
.(5.13)

Thus

P̃s(h) = P̃ (h) − ish(A(1 +E0))
w + sEw

1 + s2Ew
2 ,(5.14)
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with E0 = O(h̃−
1
2 ε), E1 = O(h3/2h̃3/2), E2 = O(hh̃), and Aw = Op w

h̃
(A) for

A(X,Ξ) :=

=

nhc∑

j=1

Reλj

(
X2

2j +X2
2j−1

1 + |X|2 +
Ξ2

2j + Ξ2
2j−1

1 + |Ξ|2

)
(5.15)

+

2nhc+nhr∑

j=2nhc+1

λj

(
X2

j

1 + |X|2 +
Ξ2

j

1 + |Ξ|2

)
.(5.16)

We claim that for h̃ sufficiently small,

〈AwU,U 〉 ≥ h̃

C
‖U‖2(5.17)

for some constant C > 0, which is essentially the lower bound for the harmonic
oscillator h̃2D2

X + X2. Clearly it suffices to prove this inequality for individual j
for the real hyperbolic terms (5.16), and in pairs for the complex hyperbolic terms
(5.15), which is the content of Lemma 5.1.

Now fix h̃ > 0 and |s| > 0 sufficiently small so that the estimate (5.17) holds
and the errors E1 and E2 satisfy

‖shAwU‖L2 � ‖sEw
1 U‖L2 + ‖s2Ew

2 U‖L2 ,

and fix ε > 0 sufficiently small that the error |E0| � 1, independent of h > 0.

We now have for smooth U satisfying Op w
h̃
(ψ0(h

1
2 •))U = U + O(h∞),

− Im 〈P̃s(h)U,U 〉 ≥ hh̃

C
‖U‖2.(5.18)

Now define the operator Kw
h by esKw

h := T−1

h,h̃
esGw

h̃ Th,h̃. Translating back into

original coordinates, and with z ∈ [−1, 1] + i(−c0h + ∞) for sufficiently small
c0 > 0, (5.18) gives

− Im
〈
esKw

h (P (h) − z) e−sKw
h u, u

〉
≥ h

C1
‖u‖2.

Finally, since ‖ exp(±sKw
h )‖ = O(h−N ) for some N , the theorem follows in the case

where p is of the form (5.1).
For general p, by Proposition 4.3, there is a symplectomorphism κ so that up to

an elliptic factor, κ∗p is of the form (5.1). Using Theorem 3 to quantize κ as an
h-FIO F , we get

Op w
h (κ∗p+ E1) = F−1P (h)F,

where E1 = O(h2) is the error arising from Theorem 3. We may then use the
previous argument for κ∗p getting an additional error of O(h2) from Theorem 3 in
(5.18), which is the same order as E1. �

Remark. The error arising at the end of the proof of Theorem 1 from the use of
Theorem 3 is of order O(h2) and hence negligible compared to our lower bound of

h for A. However, the estimate of A is used for the imaginary part of P̃s, and the
error in Theorem 3 is real, so O(h) would have been sufficient.
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Lemma 5.1. Let

a0(y, η) :=
y2

j

〈y〉2 +
η2

j

〈η〉2 ,

for (y, η) ∈ R2n−2, and 〈y〉 = (1 + |y|2)1/2, and let

a1(y, η) :=
y2
2j + y2

2j−1

〈y〉2 +
η2
2j + η2

2j−1

〈η〉2 .

Then ai, i = 0, 1 satisfies

〈Op w
h̃
(ai)U,U 〉 ≥ h̃

C
‖U‖2(5.19)

for h̃ > 0 sufficiently small and a constant 0 < C < ∞.

Proof. The idea of the proof is that ai is essentially the harmonic oscillator which
satisfies the inequality (5.19). We write each ai as a ai = |b|2 for b a complex
symbol. Observe a0(y, η) = |b(y, η)|2 with

b(y, η) :=
yj

〈y〉 + i
ηj

〈η〉 .

Thus, using the h̃-Weyl calculus,

aw
0 (y, h̃Dy) = bw(y, h̃Dy)∗bw(y, h̃Dy) + cw(y, h̃Dy),(5.20)

where

c(y, η) = h̃

{
ηj

〈η〉 ,
yj

〈y〉

}
+ O(h̃2)

= h̃〈y〉−3〈η〉−3
(
1 + O(|y|2 + |η|2)

)
+ O(|y|2|η|2) + O(h̃2).(5.21)

For (y, η) small, c is bounded from below by h̃ as in (5.17), and for large (y, η) we
have

C−1 ≤ a0 ≤ C

for some constant C > 0. Hence for large (y, η), (5.20) is bounded from below

independent of h̃. Observe a1(y, η) = |b2j(y, η)|2 + |b2j−1(y, η)|2 for

bk(y, η) =
yk

〈y〉 − i
ηk

〈η〉 ,

and the same argument applies to a1 as to a0. �

Remark. It is interesting to note that the estimate (1.4) depends only on the real
parts of the eigenvalues λj above. Unraveling the definitions, the eigenvalues λj

are logarithms of the eigenvalues of the linearized Poincaré map dS(0) from above.
Then (1.4) depends only on the modulis of the eigenvalues of dS(0).
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5.1. A Return to Quadratic Forms. Recall the only place we have used that
the eigenvalues are distinct is in determining the possible form of the quadratic form
q(ρ) defined by dS(0) = expHq. We then considered the Hamilton, or Fundamental
matrix B defined by

q(ρ) =:
1

2
ω̃(ρ,Bρ).(5.1.1)

We follow [Hor5] and return to the setup for Proposition 4.1. All of the following
changes of variables will be linear, so we may assume we are working in R2n−2 and
choose local symplectic coordinates in which ω̃ is the standard symplectic form

ω̃ =
n−1∑

j=1

dξj ∧ dxj.

Then we can write (5.1.1) in a more easily manipulated form:

q(ρ) =:
1

2
〈ρ, JBρ〉

where J is the matrix of symplectic structure on R2n,

J =

(
0 −I
I 0

)
.

As mentioned previously, the eigenvalues of B are the logarithms of the eigenval-
ues of dS(0) (with a suitably chosen branch cut), hence have nonzero real part,
and come in pairs λ,−λ for the positive real hyperbolic eigenvalues, and 4-tuples
λ,−λ, λ̄,−λ̄ for the complex hyperbolic. If we allow ρ to be complex for the mo-
ment, and denote by Vλ the generalized eigenspace for λ real or complex, we see

ω̃(Vλ, Vλ′) = 0

unless λ + λ′ = 0. We then consider the spaces Vλ ⊕ V−λ, which is symplectic
with the restricted symplectic form ω̃|Vλ⊕V−λ

, since λ 6= 0. As in §4 we choose the

pairs and 4-tuples of eigenvalues so that Reλ > 0 and Imλ ≥ 0. We thus have a
decomposition of R2n−2 into symplectic subspaces

R
2n−2 =




nhc⊕

j=1

Vλj
⊕ V−λj

⊕ Vλ̄j
⊕ V−λ̄j



⊕




nhc+nhr⊕

j=nhc+1

Vλj
⊕ V−λj




where nhr is the number of real eigenvalues with λ > 0 and nhc is the number of
complex eigenvalues with Reλ > 0, Imλ > 0. Our notation here means if λj has
multiplicity kj, then

nhc∑

j=1

4kj +

nhc+nhr∑

j=nhc+1

4kj = 2n− 2.

Fix λ real or complex, Reλ > 0, Imλ ≥ 0, with multiplicity greater than 1 and
consider the complex symplectic subspace Vλ ⊕ V−λ. Assume Vλ has dimension m.
Note B restricts to a linear map in Vλ, T := B|Vλ

, such that T − λI is nilpotent.
Our definitions equip Vλ ⊕ V−λ with a symplectic structure in which V−λ is dual
and isomorphic to Vλ. We abuse notation and write a point (x, ξ) ∈ Vλ ⊕ V−λ.
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Then if we put T into Jordan form in Vλ so that Tx = λx+ (x2, x3, . . . , xm, 0), we
obtain a symplectic change of coordinates by writing

B|Vλ⊕V−λ
(x, ξ) = (λx+ (x2, . . . , xm, 0),−λξ − (0, ξ1, ξ2, . . . , ξm−1)),

by the symplectic skew symmetry of B. In these coordinates we then have qλ, the
projection of q onto Vλ ⊕ V−λ,

qλ(x, ξ) = λ

k∑

l=1

xlξl +

k−1∑

l=1

xl+1ξl,(5.1.2)

where k is the multiplicity of λ. This is the normal form in complex variables, with
the “actions” λxjξj as in §4, but with the additional terms coming from the Jordan
form. In order to understand the real normal form, there are two cases to examine.

Case 1: λ > 0 is real. Then the space Vλ ⊕V−λ is real, the change of variables
above is real, and we get qλ exactly as in (5.1.2). Let the real matrix Qλ be defined
by the real normal form:

qλ(x, ξ) =:
1

2
〈(x, ξ), Q(x, ξ)〉.(5.1.3)

Then Q takes the special form

Q =

(
0 A
AT 0

)

where A is the k × k matrix

A =




λ 0 . . . . . . .
1 λ 0 . . .

0
.. .

. . . 0
... . . . 1 λ




(5.1.4)

and AT denotes the transpose of A.
Case 2: λ complex, Reλ > 0, Imλ > 0. We use a similar change of variables

to that in §4. That is, let {el, fl} be the generalized eigenvectors for λ,−λ respec-
tively. Here, 1 ≤ l ≤ k where k is the multiplicity of λ. Then {el, fl, ēl, f̄l} forms a
basis for a complex vector space which is the complexification of a real symplectic
vector space. We then consider the projection qλ of q onto the space

W = Vλ ⊕ V−λ ⊕ Vλ̄ ⊕ V−λ̄.

Write a point ρ in W as

ρ =

k∑

l=1

zlel + ζlfl + wlēl + ηlf̄l,

so that

qλ(ρ) = λ
k∑

1

zlζl + λ̄
k∑

1

wlηl +
k−1∑

1

zl+1ζl +
k−1∑

1

wl+1ηl.

We define as in §4 a real symplectic basis {e1l , e2l , f1
l , f

2
l } for 1 ≤ l ≤ k by

el =
1√
2
(e1l + ie2l ), fl =

1√
2
(f1

l − if2
l ),
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and write in these new coordinates

ρ =

k∑

l=1

2∑

r=1

xr
l e

r
l + ξr

l r
r
l .

Then we get the real normal form of qλ in these coordinates:

qλ(ρ) = Reλ

k∑

1

(x2l−1ξ2l−1 + x2lξ2l) − Imλ

k∑

1

(x2lξ2l−1 − x2l−1ξ2l)

+

k−1∑

1

(x2l+1ξ2l−1 + x2l+2ξ2l) .

We again define the real matrix Q in terms of the real quadratic normal form qλ

by (5.1.3), which now takes the form

Q =

(
0 A
AT 0

)
,

where A is the 2k × 2k matrix


Λ 0 . . . . . . .
I Λ 0 . . .

0
.. .

. . . 0
... . . . I Λ



,(5.1.5)

with I the 2 × 2 identity matrix and

Λ =

(
Reλ − Imλ
Imλ Reλ

)
.

Putting this discussion together with the proof of Proposition 4.1, we have proved
the following:

Proposition 5.2. Let p ∈ C∞(T ∗X), γ ⊂ {p = 0} as above, with the linearized
Poincaré map dS(0) having eigenvalues {µj} not on the unit circle, and suppose
µj has multiplicity kj. Then there exists a neighbourhood, U , of γ in T ∗X, a
smooth positive function b ≥ C−1 > 0 defined in U , and a symplectomorphism
κ : U → κ(U ) ⊂ T ∗

S
1
(t,τ) × T ∗

R
n−1
(x,ξ) such that

κ(γ) = {(t, 0; 0, 0) : t ∈ S
1},

and b(t, τ, x, ξ)p = κ∗(g + r), with

g(t, τ ;x, ξ) =

= τ +

nhc∑

j=1

kj∑

l=1

( Reλj (x2l−1ξ2l−1 + x2lξ2l) − Imλj (x2l−1ξ2l − x2lξ2l−1))

+

nhc∑

j=1

kj−1∑

l=1

(x2l+1ξ2l−1 + x2l+2ξ2l)

+

2nhc+nhr∑

j=2nhc+1




kj∑

l=1

λjxlξl +

kj−1∑

l=1

xl+1ξl


 ,

where λj = logµj for each j (with a suitable branch cut) and r = O(|x|3 + |ξ|3).
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The proof of Lemma 4.2 depends only on the moduli of the eigenvalues of dS(0)
restricted to the stable and unstable manifolds, hence does not depend on the mul-
tiplicities, or the Jordan form. Consequently we have the analogue of Proposition
4.3.

Proposition 5.3. Under the assumptions of Proposition 5.2, there exists a neigh-
bourhood, U , of γ in T ∗X, a smooth positive function b ≥ C−1 > 0 defined in U , a
symplectomorphism κ : U → κ(U ) ⊂ T ∗S1

(t,τ)×T ∗R
n−1
(x,ξ), and a smooth, n×n-matrix

valued function Bt such that

κ(γ) = {(t, 0; 0, 0) : t ∈ S
1}, and b(t, τ, x, ξ)p = κ∗g, with

g(t, τ ;x, ξ) = τ + 〈Bt(x, ξ)x, ξ〉,
with Bt satisfying

〈Bt(0, 0)x, ξ〉 =

=

nhc∑

j=1

kj∑

l=1

( Reλj (x2l−1ξ2l−1 + x2lξ2l) − Imλj (x2l−1ξ2l − x2lξ2l−1))

+

nhc∑

j=1

kj−1∑

l=1

(x2l+1ξ2l−1 + x2l+2ξ2l)

+

2nhc+nhr∑

j=2nhc+1




kj∑

l=1

λjxlξl +

kj−1∑

l=1

xl+1ξl


 .

5.2. End of the Proof of Theorem 1. Now we turn our attention to the proof of
Theorem 1 in the case of non-distinct eigenvalues of dS(0). Recall the key feature
to the proof of Theorem 1 in the case of distinct eigenvalues was that the normal
form given in Proposition 4.3 has quadratic part q(x, ξ) with the property that
there exists another quadratic form

w(x, ξ) =
1

2
〈W (x, ξ), (x, ξ)〉

such that Hqw(x, ξ) is a positive definite quadratic form. Then we would like our
escape function to be G(x, ξ) = w(x, ξ), however for technical reasons we had to
use a logarithmic escape function and form the families e±sGw

. With the following
theorem, the proof of Theorem 1 is complete.

Theorem 4. Suppose q ∈ C∞(R2m) is quadratic of the form

q(x, ξ) =

=

nhc∑

j=1

kj∑

l=1

( Reλj (x2l−1ξ2l−1 + x2lξ2l) − Imλj (x2l−1ξ2l − x2lξ2l−1))(5.2.1)

+

nhc∑

j=1

kj−1∑

l=1

(x2l+1ξ2l−1 + x2l+2ξ2l)(5.2.2)

+

2nhc+nhr∑

j=2nhc+1




kj∑

l=1

λjxlξl +

kj−1∑

l=1

xl+1ξl


 ,(5.2.3)
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and

G(x, ξ) =
1

2

(
log(1 + |x|2) − log(1 + |ξ|2)

)
.

Then there exist m × m nonsingular matrices A and A′, positive real numbers
0 < r1 ≤ r2,≤ · · · ≤ rm < ∞, and symplectic coordinates (x, ξ) such that

Hq(G) =

∑m
j=1 r

−2
j x2

j

1 + |Ax|2 +

∑m
j=1 r

−2
j ξ2j

1 + |A′ξ|2 .(5.2.4)

Proof. First, suppose

g(x, ξ) =
1

2

〈
g̃

(
x
ξ

)
,

(
x
ξ

)〉

is a real quadratic form with g̃ symmetric of the form

g̃ =

(
P 0
0 −P

)
,

where P is symmetric and nonsingular. Then

∂x
1

2
log(1 + 〈Px, x〉) =

Px

1 + 〈Px, x〉 ,

and similarly for ξ so studying

Hq

(
1

2
(log(1 + 〈Px, x〉)− log(1 + 〈Pξ, ξ〉))

)

can be reduced to studying Hqg(x, ξ), modulo the positive terms 1 + 〈P ·, ·〉 in the
denominator. If q(x, ξ) is of the form (5.2.1-5.2.3), then we can write q in terms of
the fundamental matrix B:

q(x, ξ) =

〈(
x
ξ

)
, JB

(
x
ξ

)〉
,

where

J =

(
0 −I
I 0

)

as usual. Then the vector field Hq can be written as

Hq =

〈
B

(
x
ξ

)
,

(
∂x

∂ξ

)〉
,

and

Hqg =

〈
B

(
x
ξ

)
,

(
∂x

∂ξ

)〉(
1

2

〈
g̃

(
x
ξ

)
,

(
x
ξ

)〉)

=

〈
B

(
x
ξ

)
, g̃

(
x
ξ

)〉

=

〈
g̃B

(
x
ξ

)
,

(
x
ξ

)〉
,

since g̃ is symmetric.
Now from the discussion preceding the statement of Theorem 4, we know B =

−JQ for Q of the form

Q =

(
0 A
AT 0

)
,(5.2.5)
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where A is block diagonal with diagonal elements of the form (5.1.4) or (5.1.5).
Thus with the same A as (5.2.5),

B =

(
AT 0
0 −A

)
.

Now we have reduced the problem to finding nonsingular P such that PAT and PA
are both positive definite. But we know that if λ is an eigenvalue of A, then Reλ >
0, so A is positive definite and P = I suffices. (5.2.4) then follows immediately from
Lemma 5.4. �

We have used the following classical lemma (see, for example, [HoZe] for a proof).

Lemma 5.4. Let

q(x, ξ) =
1

2
〈Q(x, ξ), (x, ξ)〉

be a positive definite quadratic form, where Q is symmetric. Then there are positive
numbers 0 < r1 ≤ r2 ≤ · · · ≤ rm < ∞ and a linear symplectic transformation T
such that

q(T (x, ξ)) =

m∑

j=1

1

r2j
(x2

j + ξ2j ).

Further, if T ′ is another linear symplectic transformation such that

q(T ′(x, ξ)) =
m∑

j=1

1

r′2j
(x2

j + ξ2j )

for 0 < r′1 ≤ · · · ≤ r′m < ∞, then rj = r′j for all j and T = T ′.

6. Proof of Theorem 2 and the Main Theorem

6.1. Proof of Theorem 2. In this section we show how to use Theorem 1 with
a few other results to deduce Theorem 2. This is similar to [BuZw], with the
generalization of the loxodromic assumption. First we need the following standard
lemma.

Lemma 6.1. Suppose V0 b T ∗X, p is a symbol, T > 0, A an operator, and
V b T ∗X a neighbourhood of γ satisfying





∀ρ ∈ {p−1(0)} \ V, ∃ 0 < t < T and ε = ±1 such that
exp(εsHp)(ρ) ⊂ {p−1(0)} \ V for 0 < s < t, and
exp(εtHp)(ρ) ∈ V0;

(6.1.1)

and A is microlocally elliptic in V0 × V0. If B ∈ Ψ0,0(X,Ω
1
2

X) and WFh (B) ⊂
T ∗X \ V , then

‖Bu‖ ≤ C
(
h−1 ‖Pu‖+ ‖Au‖

)
+ O(h∞)‖u‖.

Figure 3 is a picture of the setup of Lemma 6.1.

Proof. Since {p−1(0)} is compact, we can replace V0 with a precompact neighbour-
hood of V0 ∩ {p−1(0)}. We will prove a local version which can be pasted together
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γ

V

V0

Figure 3. The energy surface {p−1(0)}.

to get the global estimate. We may assume WFh (A) ⊂ U , where U is a small open
neighbourhood of some point ρ0 ∈ V0, and

WFh (B) b
⋃

0≤t≤t0

exp(εtHp)(U1) ⊂ T ∗X \ V,(6.1.2)

where U1 b U and A is microlocally elliptic on U1 × U1. For |t| ≤ t1 sufficiently
small, by Proposition 3.5 there is a microlocally invertible h-FIO T which conjugates
P to hDx1

. Set ũ = Tu, and let B̃ ∈ Ψ0,0 be microlocally 1 on WFh (B)×WFh (B)

and 0 microlocally outside (∪0≤t≤t1 exp(εtHp)(U1))
2 ⊂ (T ∗X \ V )2. We calculate

1

2
∂x1

‖ũ‖2 = 〈∂x1
ũ, ũ〉

≤ ‖∂x1
ũ‖ ‖ũ‖

≤ 1

4
h−1

∥∥TPT−1ũ
∥∥2

+ ‖ũ‖2 + O(h∞)‖u‖2
L2(X)

=⇒ ‖B̃T−1ũ‖2
L2(X) ≤ Ct1

(
h−1

∥∥TPT−1ũ
∥∥2

L2(X)
+
∥∥AT−1ũ

∥∥2

L2(X)
+

+O(h∞)‖u‖2
L2(X)

)
,

where the last inequality follows from Gronwall’s inequality. But ‖BT−1ũ‖2
L2(X) ≤

‖B̃T−1ũ‖2
L2(X) gives the result for small t. Then we partition [0, t0] into finitely

many subintervals and apply the small t argument to each one. �

Using this lemma, we can deduce the following proposition.

Proposition 6.2. Suppose ψ0 ∈ S0,0(T ∗X)∩C∞
c (T ∗X) is a microlocal cutoff func-

tion to a small neighbourhood of γ ⊂ {p−1(0)}. For Q(z) = P (h) − z − iChaw as
above with z ∈ [−1, 1] + i(−c0h,∞), c0 > 0 and C > 0 sufficiently large, we have

Q(z)u = f =⇒ ‖(1 − ψ0)
wu‖ ≤ Ch−1‖f‖ + O(h∞)‖u‖.(6.1.3)

For this proposition and the proof, we use the convenient shorthand notation:
for a symbol b, bw := Op w

h (b).

Remark. Note that Proposition 6.2 is the best possible situation. It says roughly
that away from γ, Q−1 is bounded by Ch−1. Thus the global statement in Theorem
2 represents a loss of

√
log(1/h).
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γ

ψ2 ψ1

c0

2

a

(b)(a)

γ

1 − ψ1

1 − ψ2

Figure 4. (a) The cutoff functions a, ψ1, and ψ2. (b) (1−ψ2)
2 ≤

(1 − ψ1).

Proof. Choose c0 > 0 from Theorem 1, microlocal cutoff functions ψ1, ψ2 such that
WFh (1 − ψj) ∩ γ = ∅, and C > 0 sufficiently large so that

(Ca− c0)
w(1 − ψ1)

w ≥
{
c0(1 − ψ1)

w/2
c0((1 − ψ2)

w)∗(1 − ψ2)
w/2,

and suppψ1 ⊂ {ψ2 = 1} (see Figure 4). Then we calculate

1

2
c0h

∫

X

|(1 − ψ2)
wu|2 dx ≤ h

∫

X

(
Caw + h−1 Im z

)
u(1 − ψ1)wudx

= − Im

∫

X

Q(z)u(1 − ψ1)wudx

= − Im

∫

X

f(1 − ψ1)wudx

≤ ‖f‖ (‖(1 − ψ1)
wu‖ + O(h∞)‖u‖)

≤ (4εh)−1‖f‖2 + εh ‖(1 − ψ1)
wu‖2

+ O(h∞)‖u‖2

Now we use Lemma 6.1 with A = (1− ψ2)
w, B = (1− ψ1)

w, and P = Q(z), which
we may do since the perturbation terms in Q(z) are all of lower order. Thus

‖(1 − ψ1)
wu‖ ≤ Ch−1 ‖Q(z)u‖ + ‖(1 − ψ2)

wu‖ + O(h∞)‖u‖
=⇒ ‖(1 − ψ1)

wu‖2 ≤ Ch−1‖f‖
(
Ch−1‖f‖ + ‖(1 − ψ2)

wu‖
)

+

+ ‖(1 − ψ2)
wu‖2

+ O(h∞)‖u‖2

≤ Ch−2‖f‖2 + ‖(1 − ψ2)
wu‖2

+ O(h∞)‖u‖2

≤ Ch−2‖f‖2 + ε ‖(1 − ψ1)
wu‖2

+ O(h∞)‖u‖2,

which gives (6.1.3) with ψ0 replaced by ψ1. Another application of Lemma 6.1 with
A = (1 − ψ2)

w, B = (ψ1 − ψ0)
w, and P = Q(z) shows the error ‖(ψ1 − ψ0)

wu‖ is
bounded by the same estimate as in (6.1.3). �

We will need the next lemma, which is essentially an operator version of the
classical Three-Line Theorem from complex analysis. We include the proof here for
the reader’s convenience, collected from [BuZw], [Bur]), and [TaZw].

Lemma 6.3. Let H be a Hilbert space, and assume A,B : H → H are bounded, self-
adjoint operators satisfying A2 = A and BA = AB = A. Suppose F (z) is a family
of bounded operators satisfying F (z)∗ = F (z̄), ReF ≥ C−1 Im z for Im z > 0, and
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further assume

BF−1(z)B is holomorphic in Ω := [−ε, ε] + i[−δ, δ], for
δ

ε
�M− 1

N1 < 1

for some N1 > 0, where ‖BF−1(z)B‖ ≤ M . Then for |z| < ε/2, Im z = 0,

(a)
∥∥BF−1(z)B

∥∥ ≤ C
logM

δ
,

(b)
∥∥BF−1(z)A

∥∥ ≤ C

√
logM

δ
.

Proof. For the proof of part (a), consider the holomophic operator-valued function
f(z) = BF (z)−1B. Choose ψ ∈ C∞

c ([−3ε/4, 3ε/4]), ψ ≡ 1 on [−ε/2, ε/2], and for
z ∈ Ω, set

ϕ(z) = δ−
1
2

∫
e−(x−z)2/δψ(x)dx.

ϕ(z) has the following properties:
(a) ϕ(z) is holomorphic in Ω,
(b) |ϕ(z)| ≤ C in Ω,
(c) |ϕ(z)| ≥ C−1 > 0 on [−ε/2, ε/2], and
(d) |ϕ(z)| ≤ Ce−C/δ on Ω ∩ {Re z = ±ε}.

Now for z ∈ Ω̃ := [−ε, ε] + i[−δ, δ/ logM ] set

g(z) = e−iNz logM/δϕ(z)f(z),

and note that g(z) satisfies

(a) |g(z)| ≤ CM 1−N on Ω̃ ∩ { Im z = −δ},
(b) |g(z)| ≤ CNe

−C/δ on Ω̃ ∩ {Re z = ±ε}, and

(c) |g(z)| ≤ CN log(M )/δ on Ω̃ ∩ { Im z = δ/ logM}.
Then the classical maximum principle implies for δ sufficiently small and N suffi-
ciently large, |g(z)| ≤ C log(M )/δ, which in turn implies

|f(z)| ≤ C
logM

δ
on
[
− ε

2
,
ε

2

]
⊂ R.

For part (b), note that our assumptions on F (z) imply

Im z‖u‖2 ≤ CRe 〈F (z)u, u〉.

We have

‖BF−1A‖L2→L2 = sup
{‖b‖L2=1}

‖BF−1Ab‖L2 = sup ‖BF−1A2b‖L2,
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since A2 = A. Suppose F (z)u(x) = Ab(x, z). Then u = F (z)−1Ab and Bu =
BF−1AAb, and for Im z > 0,

‖Bu‖2 ≤ C‖u‖2

≤ C

Im z
〈ReF (z)u, u〉

≤ C

Im z
|〈F (z)u, u〉|

=
C

Im z
|〈Ab, u〉|

=
C

Im z
|〈Ab,Au〉|

≤ C

Im z
‖Ab‖2

where we have used A∗A = A2 = A. Thus we have

‖BF (z)−1A‖L2→L2 ≤ C√
Im z

, for Im z > 0 and

‖BF (z)−1A‖L2→L2 = sup
{‖u‖=1}

‖BF−1Au‖L2

= sup
{‖u‖=1}

‖BF−1BAu‖L2→L2

≤ M sup
{‖u‖=1}

‖Au‖L2

≤ CM,

and we can apply the proof of part (a) to f(z) = BF (z)−1A to get (b). �

Proof of Theorem 2. Let ψ0 satisfy the assumptions of Proposition 6.2. Then

‖(1 − ψ0)
wu‖ ≤ Ch−1‖Q(z)u‖ + O(h∞)‖u‖.

Further, since

‖[Q,ψw
0 ]u‖ ≤

∥∥∥[Q,ψw
0 ] (1 − ψ̃w

0 )u
∥∥∥ + O(h∞)‖u‖,

for some ψ̃0 satisfying the assumptions of Proposition 6.2 and WFh ψ̃0 ⊂ {ψ0 = 1},
so using Theorem 1 and the fact that [Q,ψw

0 ] is compactly supported and of order
h, we have

‖ψw
0 u‖ ≤ Ch−N0 (‖ψw

0 Qu‖+ ‖[Q,ψw
0 ]u‖)

≤ Ch−N0
(
‖ψw

0 Qu‖+ h−1‖hQu‖
)
+ O(h∞)

≤ Ch−N0‖Qu‖+ O(h∞)‖u‖.
Now let F (w) be the family of operators F (w) = ih−1Q(z0 + hw), A = χw

supp ϕ,

B = id . Fix δ > 0 independent of h, ε = (Ch)−1, M = h−N0 , and apply Lemma
6.3 to get

‖BF−1B‖ ≤ C log(h−N0);

‖BF−1A‖ ≤ C
√

log(h−N0 ),

and (1.5-1.6) follows. �
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6.2. Proof of the Main Theorem. The Main Theorem is an easy consequence
of Theorem 2.

Proof of the Main Theorem. Recall A is 0 microlocally away from γ × γ. Let Ã ∈
Ψ0,0

h be a pseudodifferential operator so that Ã = I microlocally on a neighbourhood

of WFh (A) × WFh (A). Let aw be as in Theorems 1 and 2. Choosing A and Ã so

that WFh (aw) is disjoint from WFh (Ã), we have for Q = Q(0)

QÃu = PÃu.(6.2.1)

The right hand side of (6.2.1) is [P, Ã]u+ ÃPu. Now [P, Ã] is supported away from

γ since Ã is constant near γ, so
∥∥∥PÃu

∥∥∥
L2(X)

≤
∥∥∥
[
P, Ã

]
u
∥∥∥

L2(X)
+ ‖Pu‖L2(X)

≤ Ch ‖(I − A)u‖L2(X) + ‖Pu‖L2(X).(6.2.2)

From Theorem 2, we have
∥∥∥QÃu

∥∥∥
L2(X)

≥ C−1 h√
log(1/h)

∥∥∥Ãu
∥∥∥

L2(X)
.(6.2.3)

Combining (6.2.2) and (6.2.3), we have

C−1‖u‖L2(X) ≤ C−1

(∥∥∥Ãu
∥∥∥

L2(X)
+ ‖(I − A)u‖L2(X)

)

≤ C
(√

log(1/h) + C−1
)
‖(I − A)u‖L2(X)

+C

√
log(1/h)

h
‖Pu‖L2(X),

which for 0 < h < h0 is (1.1). �

Remark. In the calculation (6.2.2), we have only used ‖[P, Ã]u‖ ≤ Ch‖(I −A)u‖.
If we could determine a global geometric condition which would allow us to choose
Ã in a manner which improves this, but doesn’t have too much interaction with aw

in the definition of Q(z), we could eliminate the log(h−1) in (1.1).

7. An Application: The Damped Wave Equation

In this section we adapt the techniques from §5-6 to study the damped wave
equation. Let X be a compact manifold without boundary, a(x) ∈ C∞(X), a(x) ≥
0, and consider the following problem:

{ (
∂2

t − ∆ + 2a(x)∂t

)
u(x, t) = 0, (x, t) ∈ X × (0,∞)

u(x, 0) = 0, ∂tu(x, 0) = f(x).
(7.1)

Let p ∈ C∞(T ∗X), p = |ξ|2, be the microlocal principal symbol of −∆ and suppose
the classical flow (geodesic flow) of Hp admits a single closed, loxodromic orbit γ
in the level set {p−1(1)}. Assume throughout that a(x) is supported away from the
projection γ̃ of γ onto X (see Figure 5). We recall that the Hs inner product on
X is given by the local formula

〈u, v〉Hs =

∫

Rn

(1 + |ξ|2)sû¯̂vdξ,
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X

γ̃

supp (a)

Figure 5. The manifold X and the projection γ̃ of γ onto X.

where û is the Fourier transform of u. If u solves (7.1), we define the s-energy Es(t)
of u at time t to be

Es(t) =
1

2

(
‖∂tu‖2

Hs(X) +
∥∥∥
√
−∆u

∥∥∥
2

Hs(X)

)
.

Lemma 7.1. If a(x) ≡ 0, Es(t) is constant. If a(x) is not identically zero, then
Es(t) is decreasing.

Proof.

d

dt
Es(t) =

〈
∂2

t u, ∂tu
〉
Hs +

〈
∂t

√
−∆u,

√
−∆u

〉
Hs

=
〈
∂tu, (∂

2
t − ∆)u

〉

= −〈∂tu, 2a(x)∂tu〉 .
�

We make an important dynamical assumption, which amounts to a geometric
control condition similar to that given by Rauch-Taylor in [RT]. We assume:





There exists a time T > 0 and a neighbourhood V
of γ such that for all |ξ| = 1, (x, ξ) ∈ T ∗X \ V,
exp(tHp)(x, ξ)∩ {a > 0} 6= ∅ for some |t| ≤ T.

(7.2)

In [EvZw] §5.3, it is shown that with a global Rauch-Taylor condition, we have
exponential decay in zero-energy. Here we have a region without geometric control,
so we expect some loss.

Theorem 5. Assume (7.2) holds and a(x) is not identically zero. Then for any
ε > 0, there is a constant C > 0 such that

E0(t) ≤ Ce−t/C‖f‖2
Hε .

The damped wave equation in the context of a global Rauch-Taylor condition
has been studied in [RT], [Sjö3], [Leb], and [Hit]. The difference here is the presence
of γ and a neighbourhood in which the Rauch-Taylor condition doesn’t hold.
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Formally, if u ≡ 0 for t < 0, we apply the Fourier transform to (7.1) in the t
variable and integrating by parts motivates us to study the equation

P (τ )û(x, τ ) := (−τ 2 − ∆ + 2ia(x)τ )û(x, τ ) = f.(7.3)

We use the techniques of the previous sections to gain estimates on the resolvent
P (τ )−1. We call the poles of P (τ )−1 eigenfrequencies for (7.1). Note if τ is an
eigenfrequency, then 0 ≤ Im τ ≤ 2‖a‖L∞. Further, (7.3) is invariant under the
transformation (û, τ ) 7→ (¯̂u,−τ̄), so the set of eigenfrequencies is symmetric about
the imaginary axis. We therefore study only those in the right half plane. For
0 < h ≤ h0 and z ∈ Ω := [α, β] + i[−γ, γ] where 0 < α < 1 < β < ∞ and γ > 0, set
τ =

√
z/h. (7.3) becomes

1

h2
Q(z, h)û = f(7.4)

where

Q(z, h) = P (h)− z + 2ih
√
za(x)(7.5)

and the principal symbol of P (h) is p(x, ξ) = |ξ|2. The next Corollary follows
directly from the proof of Theorem 1, replacing s in the conjugation (5.8) with −s.
Corollary 6. Suppose u has wavefront set sufficiently close to γ. Then there exists
c0 > 0, C < ∞, and N ≥ 0 such that for z ∈ [α, β] + i[−c0h, c0h],

Im 〈(P (h) − z)u, u〉 ≥ C−1hN‖u‖2.

In particular, ‖Q(z, h)u‖ ≥ C−1hN‖u‖.
We observe that for u as in the theorem and −c0h < Im z < 0, ‖Q(z, h)u‖ ≥

C−1 Im z‖u‖.
The proof of Proposition 6.2 relies on the assumption that the symbol a(x, ξ) in

(1.3) is elliptic away from γ. The function a(x) in (7.5) is not assumed to be elliptic
anywhere, so we will use a technique from [Leb] to replace a(x) with its average
over trajectories of exp(tHp).

For T > 0, we define the T -trajectory average of a smooth function b:

〈b〉T (x, ξ) =
1

T

∫ T

0

b ◦ exp(tHp)(x, ξ)dt.

Set q(z) = 2
√
za(x), and for z ∈ Ω̃ := [α, β] + i[0, c1h], where c1 > 0 will be chosen

later, and (x, ξ) ∈ {p−1([α− δ, β + δ])} for δ > 0, let gRe z ∈ S(1) depending on T
solve

q( Re z) −HpgRe z = 〈q( Re z)〉T .
(See [Sjö3] for details on the construction of gRe z.) Now we form the elliptic
operator A := Op w

h (eg) ∈ Ψ0,0, and observe

A−1PA = P + A−1[P,A]

= P − ihOp w
h (eg)−1Op w

h ({p, eg})
= P − ihB,

with σh(B) = e−g{p, eg} + O(h) = Hpg + O(h). Thus

A−1 (P + ihq(z))A = P + ihOp w
h (q( Re z) −Hpg) + O(h2)

= P + ihOp w
h (〈q( Re z)〉T ) ,
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since Im z = O(h) Re z. Following [Hit], we claim there exists a time T > 0 such
that

〈a〉T (x, ξ) ≥ C−1 > 0(7.6)

for (x, ξ) ∈ {p−1([α−δ/2, β+δ/2])}\V , where V is as in the statement of Theorem

5. To see this, recall p = |ξ|2 means Hp = 2〈ξ, ∂x〉 and p−1(E) = {|ξ| =
√
E}, which

means

inf
p−1(E)

〈a〉T = inf
p−1(1)

〈a〉√ET .

By Assumption (7.2),

inf
p−1(1)

〈a〉√ET ≥ C−1 > 0

in {p−1(1)} \ V for T sufficiently large and
√
E close to 1. Choosing α and β

sufficiently close to 1 proves (7.6).

Corollary 7. Suppose ψ0 ∈ S0,0(T ∗X) ∩ C∞
c (T ∗X) is a microlocal cutoff function

to a small neighbourhood of γ ⊂ {p−1(1)}. For Q(z, h) = P (h) − z + 2ih
√
za as

above with z ∈ [α, β] + i(−c1h, c1h), c1 > 0, we have

Q(z, h)u = f =⇒ ‖(1 − ψ0)
wu‖ ≤ Ch−1‖f‖ + O(h∞)‖u‖.(7.7)

Proof. Selecting T > 0 sufficiently large and c1 > 0 such that

0 < c1 < inf
p−1([α−δ/2,β+δ/2])

〈a〉T (x, ξ),

we apply the proof of Proposition 6.2 to the conjugated operator A−1Q(z, h)A. �

We now have good resolvent estimates for z in an h interval below the real axis,
as well as weaker estimates above.

Corollary 8. (i) There exist constants C > 0 and N > 0 such that the resolvent
Q(z, h)−1 satisfies

‖Q(z, h)−1‖L2→L2 ≤ Ch−N , z ∈ [α, β] + i(−c0h, c0h).
(ii) In addition, there is a constant C1 such that

‖Q(z, h)−1‖L2→L2 ≤ C1
log(1/h)

h
, z ∈ [α, β] + i[−C−1

1 h/ log(1/h), C−1
1 h].

This is an immediate consequence of the proof of Theorem 2, together with the
slight modification of Lemma 6.3 given in Lemma 7.2.

Lemma 7.2. Let f(z) be a holomorphic function on Ω = [−ε, ε] + i[−δ, δ], with

δ

ε
�M− 1

N1

for some N1 > 0, and suppose f satisfies |f(z)| ≤M on Ω with

|f(z)| ≤ C/| Imz| for Im z < 0.

Then there exists a constant 0 < C1 < ∞ such that if −C−1
1 δ/ logM ≤ Im z ≤

C−1
1 δ we have

|f(z)| ≤ C
logM

δ
.
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Proof. Let ψ(x) be as in the proof of Lemma 6.3, and for C−1
1 � c0, let

ϕ(z) = δ−
1
2

∫
e−(x−z+iC−1

1
δ)2/δψ(x)dx.

We observe if C1 > 0 is sufficiently large, for | Im z| ≤ C−1
1 δ,

(x− z + iC−1
1 δ)2 =

= (x− Re z)2 − (C−1
1 δ − Im z)2 + 2i(x − Re z)(C−1

1 δ − Im z)

and
∣∣(x− Re z)(C−1

1 δ − Im z)
∣∣ ≤ 4C−1

1 εδ,

so if C1 > 0 is sufficiently large,

Re e−(x−z+iC−1

1
δ)2/δ ≥ e−(x−Re z)2/δ+(C−1

1
δ− Im z)2/δ cos(4C−1

1 ε)

≥ C−1e−(x−Re z)2/δ+(C−1

1
δ− Im z)2/δ .

Thusϕ(z) satisfies
(a) ϕ(z) is holomorphic in Ω,
(b) |ϕ(z)| ≤ C in Ω,
(c) |ϕ(z)| ≥ C−1 for z ∈ [−ε/2, ε/2]+ i[−C−1

1 δ, C−1
1 δ],

(d) |ϕ(z)| ≤ Ce−C/δ on {±ε}×i[−C−1
1 δ, C−1

1 δ], if C1 > 0 is chosen large enough.
Now similar to the proof of Lemma 6.3, for

z ∈ Ω̃ := [−ε, ε] + i[−C−1
1 δ/ logM,C−1

1 δ]

set

g(z) = eiNz logM/δϕ(z)f(z).

Then as in the proof of Lemma 6.3, the classical maximum principle implies for
δ sufficiently small and N sufficiently large, |g(z)| ≤ C log(M )/δ, which in turn
implies

|f(z)| ≤ C
logM

δ
on
[
− ε

2
,
ε

2

]
+ i[−C−1

1 δ/ logM,C−1
1 δ].

�

With these resolvent estimates, we have the following estimates in terms of τ .

Proposition 7.3. Fix ε > 0. There exist constants 0 < C,C1 < ∞ such that if

−(log 〈τ 〉)−1 ≤ Im τ ≤ C−1
1 ,

‖P (τ )−1‖L2→L2 ≤ C log 〈τ 〉
〈τ 〉 ,(7.8)

‖P (τ )−1‖L2→H2 ≤ C〈τ 〉 log 〈τ 〉, and(7.9)

‖P (τ )−1‖Hs→Hs+1−ε ≤ C.(7.10)

Proof. (7.8) follows directly from rescaling. To see (7.9), calculate

‖u‖H2 ≤ C(‖∆u‖L2 + ‖u‖L2)

≤ C

(
‖P (τ )u‖L2 +

∥∥(−τ2 + 2ia(x)τ )u
∥∥

L2 +
log〈τ 〉
〈τ 〉 ‖P (τ )u‖L2

)

≤ C
(
1 + |τ | log 〈τ 〉 + 〈τ 〉−1 log 〈τ 〉

)
‖P (τ )u‖L2 .
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For (7.10), let ε > 0 be given. From Lemma 7.4, we have
∥∥P (τ )−1u

∥∥2

H1−ε ≤ C
∥∥P (τ )−1u

∥∥1−ε

H2

∥∥P (τ )−1u
∥∥1+ε

L2

≤ Cε‖u‖2
L2(X).

To get the estimates for Hs → Hs+1−ε, we conjugate P (τ )−1 by the operators

Λs = (1 − ∆)
s
2

and apply to v = Λsu:
∥∥P (τ )−1u

∥∥
Hs+1−ε =

∥∥Λ1−εΛsP (τ )−1Λ−sv
∥∥

L2

=
∥∥Λ1−ε

(
P (τ )−1 + Λs[P (τ )−1,Λ−s]

)
v
∥∥

L2

≤ ‖v‖L2

≤ C ‖u‖Hs .

�

We have used the following interpolation lemma.

Lemma 7.4. Let ε > 0 be given, and suppose f ∈ H2(X) ∩ L2(X). Then

‖f‖2
H1−ε ≤ C ‖f‖1−ε

H2 ‖f‖1+ε
L2 .

Proof. We use the local formula for Hs norms and calculate:

‖f‖2
H1−ε =

∫

Rn

(1 + |ξ|2)1−εf̂
¯̂
fdξ

=

∫ (
(1 + |ξ|2)|f̂ |

)1−ε

|f̂ |1+εdξ

≤ C

∥∥∥∥
(
(1 + |ξ|2)|f̂ |

)1−ε
∥∥∥∥

L
2

1−ε

∥∥∥|f̂ |1+ε
∥∥∥

L
2

1+ε

= ≤ C ‖f‖1−ε
H2 ‖f‖1+ε

L2 .

�

We are now in position to prove Theorem 5. This proof comes almost directly
from [EvZw] §5.3.

Proof of Theorem 5. Assume u(x, t) solves (7.1). Choose χ ∈ C∞(R), 0 ≤ χ ≤ 1,
χ ≡ 1 on [1,∞), and χ ≡ 0 on (−∞, 0]. Set u1(x, t) = χ(t)u(x, t). We apply the
damped wave operator to u1:(

∂2
t − ∆ + 2a∂t

)
u1 =(7.11)

= χ′′u+ 2χ′ut + 2aχ′u+ χ
(
∂2

t − ∆ + 2a∂t

)
u

= χ′′u+ 2χ′ut + 2aχ′u =: g1.(7.12)

With g1 supported in X × (0, 1) and u1 ≡ 0 for t ≤ 0, we have

‖g1‖2
L2((0,∞);Hε) ≤ C

(
‖u‖2

L2((0,1);Hε) + ‖∂tu‖2
L2((0,1);Hε)

)
.(7.13)

Now

∂t〈u, u〉Hε(X) = 2〈∂tu, u〉Hε(X)

≤ ‖∂tu‖2
Hε(X) + ‖u‖2

Hε(X)

≤ CEε(t) + ‖u‖2
Hε(X),
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so by Gronwall’s inequality,

‖u(t, ·)‖2
Hε(X) ≤ Cet

(
‖u(0, ·)‖2

Hε(X) +

∫ t

0

Eε(s)ds

)

≤ Ctet‖f‖2
Hε(X).

Thus (7.13) is bounded by C‖f‖2
Hε(X).

We now apply the Fourier transform to (7.11-7.12) to write û1 = P (τ )−1ĝ1. By
Proposition 7.3, we have for Im τ = C−1 > 0

∥∥∥et/Cu1

∥∥∥
L2((0,∞);H1)

=
∥∥û1(· + iC−1)

∥∥
L2((−∞,∞);H1)

=
∥∥P (·+ iC−1)−1ĝ1(· + iC−1)

∥∥
L2((−∞,∞);H1)

≤ C‖ĝ1‖L2((−∞,∞);Hε)

≤ C‖g1‖L2((0,∞);Hε)

≤ C‖f‖Hε(X).

Thus

‖et/Cu‖L2((1,∞);H1) ≤ C‖f‖Hε(X).

Now for T > 2, choose χ2 ∈ C∞(R), 0 ≤ χ2 ≤ 1, such that χ2 ≡ 0 for t ≤ T − 1,
and χ2 ≡ 1 for t ≥ T . Set u2(x, t) = χ2(t)u(x, t). We have

(
∂2

t − ∆ + 2a∂t

)
u2 = g2

for g2 = χ′′
2u+ 2χ′

2ut + 2aχ′
2u, and supp g2 ⊂ X × [T − 1, T ]. Define

E2(t) =
1

2

∫

X

(∂tu2)
2

+
∣∣∣
√
−∆u2

∣∣∣
2

dx,

and observe

E′
2(t) =

〈
∂2

tu2, ∂tu2

〉
X
− 〈∆u2, ∂tu2〉X

= −〈2a(x)∂tu2, ∂tu2〉X + 〈g2, ∂tu2〉X
≤ C

∫

X

|∂tu2| (|∂tu| + |u|)

≤ C

(
E2(t) +

∫

X

(
|∂tu|2 + |u|2

)
dx

)
.

Now since E2(T − 1) = 0 and E2(T ) = E(T ), Gronwall’s inequality gives

E(T ) ≤ C
(
‖∂tu‖2

L2((T−1,T );L2) + ‖u‖2
L2((T−1,T );L2)

)
.(7.14)

We need to bound the first term on the right hand side of (7.14). Choose χ3 ∈
C∞(R) such that χ3 ≡ 0 for t ≤ T − 2 and t ≥ T + 1, χ3 ≡ 1 for T − 1 ≤ t ≤ T .
Then

0 =

∫ T+1

T−2

∫

X

χ2
3u
(
∂2

t u− ∆u+ 2a∂tu
)
dxdt

=

∫ T+1

T−2

∫

X

−χ2
3(∂tu)

2 − 2χ3χ
′
3u∂tu+ 2χ2

3a∂tu+ χ2
3|
√
−∆u|2dxdt,

whence

‖∂tu‖L2((T−1,T );L2) ≤ C‖u‖L2((T−2,T+1);H1),



44 HANS CHRISTIANSON

giving

E(T ) ≤ C‖u‖2
L2((T−2,T+1);H1) ≤ Ce−T/C‖f‖2

Hε(X)

as claimed. �
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