
CLASSIFICATION OF ORDER PRESERVING ISOMORPHISMS

BETWEEN ALGEBRAS OF SEMICLASSICAL OPERATORS

HANS CHRISTIANSON

Abstract. Following the work of Duistermaat-Singer [DuSi] on isomorphisms

of algebras of global pseudodifferential operators, we classify order preserving
isomorphisms of algebras of microlocally defined semiclassical pseudodifferen-

tial operators. Specifically, we show that any such isomorphism is given by
conjugation by A = BF , where B is a microlocally elliptic semiclassical pseu-

dodifferential operator, and F is a microlocally unitary h-FIO associated to

the graph of a local symplectic transformation.

1. Introduction

In the study of pseudodifferential operators on manifolds, there are two impor-
tant regimes to keep in mind. The first is a global study of pseudodifferential
operators defined using the local Fourier transform on the cotangent bundle. If
X is a compact smooth manifold and T ∗X is the cotangent bundle with the local
coordinates ρ = (x, ξ), we study pseudodifferential operators with principal symbol
homomgeneous at infinity in the ξ variables. Let Y be another compact smooth
manifold of the same dimension as X, and suppose there is an algebra isomor-
phism from the algebra of all pseudodifferential operators on X (filtered by order)
to the same algebra on Y , and suppose that isomorphism preserves the order of
the operator. Then Duistermaat-Singer [DuSi] have shown that this isomorphism
is necessarily given by conjugation by an elliptic Fourier Integral Operator (FIO).

The other setting is the semiclassical or “small-h” regime. One can study globally
defined semiclassical pseudodifferential operators, but many times it is meaningful
to study operators which are microlocally defined in some small set (see §2 for
definitions). Then we think of the h parameter as being comparable to |ξ|−1 in
the global, non-semiclassical regime. Thus the study of small h asymptotics in
the microlocally defined regime should correspond to the study of high frequency
asymptotics in the global regime. We therefore expect a similar result to that
presented in [DuSi], although the techniques used in the proof will vary slightly.

Let X be a smooth manifold, dimX = n ≥ 2, and assume U ⊂ T ∗X is a
neighbourhood of ρ0 ∈ T ∗X so that H1(U,C) = 0. Let Y be another smooth
manifold, dimY = n. Let V ⊂ T ∗Y be a non-empty pre-compact open subset of
the cotangent bundle of Y . Let Ψ0/Ψ−∞(U) denote the algebra of semiclassical
pseudodifferential operators defined microlocally in U filtered by the order in h,
and similarly for V (see §2 for definitions).

Theorem 1. Suppose

g : Ψ0/Ψ−∞(U) → Ψ0/Ψ−∞(V )
1
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is an order preserving algebra isomorphism. For every Ũ ⋐ U open, there is a
symplectomorphism

κ : Ũ → κ(Ũ)

and h0 > 0 such that, if F is a microlocally unitary h-FIO associated to κ, for all
0 < h < h0 and all P ∈ Ψ0/Ψ−∞(U) we have

g(P ) = BFPF−1B−1 microlocally in κ(Ũ)× Ũ ,(1.1)

where B ∈ Ψ0(V ) is elliptic.

Remark. A few remarks are needed about Theorem 1. First, this paper concerns
operators which are definedmicrolocally in a precompact open subset of T ∗X (see §2
for definitions). In keeping with the theme of working up to microlocal equivalence,
Theorem 1 is really the analogue of Lemma 2 in [DuSi].1 In proving Theorem 1 of
[DuSi], the authors take pains to remove the residual class Ψ−∞ from the statement
of the Theorem, which we do not do in this note. In any applications of Theorem
1 in the present note, we would first cut off to a precompact neighbourhood so
Theorem 1 applies, then fix B and F (up to microlocal equivalence) and then deal
with the errors from both the residual class and the cutoffs separately.

Second, there are two places in which the assumption H1(U,C) = 0 is used. One
is that the h-FIO F in Theorem 1 is constructed via deformation in the proof of
Proposition 2.1. This deformation proof requires H1(U,C) = 0, although there are
examples in which H1(U,C) ̸= 0 and symplectomorphisms which can be quantized
as an h-FIO (see Section 4 for an example). The second place this assumption is
used is in the construction of the pseudodifferential operator B, where we need to
conclude that a closed 1-form is exact to construct the symbol of B.

Third, as the construction of the h-FIO is by deformation and only valid in a
neighbourhood in phase space, we say F is only microlocally defined. The operator
F is unique up to O(h2), and, once F is fixed, B is unique up to O(h∞).

Fourth, to put Theorem 1 in context, we observe that every algebra homomor-
phism of the form (1.1) is an order preserving algebra isomorphism (see Proposition
2.1 below).

Finally, automorphisms of algebras of pseudodifferential operators have been
studied in the context of the more abstract Berezin-Toeplitz quantization in [Zel],
as well as for the Weyl algebra on Poisson manifolds in [B-KKo].

Acknowledgements. The author would like to thank Maciej Zworski for sug-
gesting this problem and many helpful conversations. This work was started while
the author was a graduate student in the Mathematics Department at UC-Berkeley
and he is very grateful for the support received while there. The author would also
like to thank the anonymous referee, whose many insightful comments and cor-
rections have greatly helped improve this note, and for suggesting the clarifying
example in Section 4.

1The statement of Theorem 1 is nevertheless simpler than [DuSi, Lemma 2] as in this case
there are no transmissions. See the remark after Lemma 3.3 for an explanation of this.
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2. Preliminaries

Let C∞(T ∗X) denote the algebra of smooth, C-valued functions on T ∗X, and
define the global symbol classes

Sm(T ∗X) =
{
a ∈ C∞ ((0, h0]h; C∞(T ∗X)) : |∂α

x,ξa| ≤ Cαh
−m

}
.

We define the essential support of a symbol by complement:

ess-supp h(a) =

= ∁
{
(x, ξ) ∈ T ∗X :

∣∣∂α
x,ξa

∣∣ ≤ Cαh
N ∀N and ∀(x′, ξ′) near (x, ξ)

}
.

By multiplying elements of Sm(T ∗X) by an appropriate cutoff in C∞
c (U), we

may think of symbols as being microlocally defined in U , and define the class of
symbols with essential support in U

Sm(U) =
{
a ∈ C∞ ((0, 1]h; C∞

c (U)) : |∂α
x,ξa| ≤ Cαh

−m
}
.

We write Sm = Sm(U) when there is no ambiguity.
In keeping with the theme of defining everything up to microlocal equivalence,

we recall Borel’s lemma, which says for every sequence aj ∈ Smj , j ≥ 0, with
mj > mj+1 and mj → −∞, there is an a ∈ Sm0 which is asymptotic to the sum

a(x, ξ;h) ∼
∞∑
j=0

aj(x, ξ;h).

Here, “asymptotic to” means that for every N ≥ 0,

a(x, ξ;h)−
N∑
j=0

aj(x, ξ;h) ∈ SmN+1 .

By S0/s−1 we denote the set of equivalence classes of symbols, where a is equivalent
to b if a− b ∈ S−1.

We have the corresponding spaces of pseudodifferential operators Ψm(U) acting
by the local formula (Weyl calculus)

Opw
h (a)u(x) =

1

(2πh)n

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ;h

)
ei⟨x−y,ξ⟩/hu(y)dydξ.

For A = Opw
h (a) and B = Opw

h (b), a ∈ Sm, b ∈ Sm′
we have the composition

formula (see, for example, the review in [DiSj])

A ◦B = Opw
h (a#b) ,(2.1)

where

Sm+m′
∋ a#b(x, ξ) := e

ih
2 ω(Dx,Dξ;Dy,Dη) (a(x, ξ)b(y, η))

∣∣∣
x=y
ξ=η

,(2.2)

with ω the standard symplectic form. Observe # preserves essential support in the
sense that if ess-supp h(a) ∩ ess-supp h(b) = ∅, then a#b = O(h∞). We define the
wavefront set of a pseudodifferential operator A = Opw

h (a) as

WFh (A) = ess-supp h(a),
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so that Ψm(U) is the class of pseudodifferential operators with wavefront set con-
tained in U . We denote

Ψ0(U) :=
⋃
m≤0

Ψm(U) and

Ψ−∞(U) :=
⋂
m∈Z

Ψm(U).

We will need the definition of microlocal equivalence of operators. Suppose
T : C∞(X) → C∞(X) and that for any seminorm ∥ · ∥1 on C∞(X) there is a second
seminorm ∥ · ∥2 on C∞(X) such that

∥Tu∥1 = O(h−M0)∥u∥2

for some M0 fixed. Then we say T is semiclassically tempered. We assume for the
rest of this paper that all operators satisfy this condition (see [EvZw, Chap. 10] for
more on this). Let U, V ⊂ T ∗X be open pre-compact sets. We think of operators
defined microlocally near V ×U as equivalence classes of tempered operators. The
equivalence relation is

T ∼ T ′ ⇐⇒ A(T − T ′)B = O(h∞) : D′ (X) → C∞ (X)

for any A,B ∈ Ψ0,0
h (X) such that

WFh (A) ⊂ Ṽ , WFh (B) ⊂ Ũ , with Ṽ , Ũ open and

V ⋐ Ṽ ⋐ T ∗X, U ⋐ Ũ ⋐ T ∗X.

In the course of this paper, when we say P = Q microlocally near U × V , we mean
for any A, B as above,

APB −AQB = OL2→L2 (h∞) ,

or in any other norm by the assumed pre-compactness of U and V . Similarly, we
say B = T−1 on V ×V if BT = I microlocally near U×U and TB = I microlocally
near V × U . Thus

Ψ0/Ψ−∞(U)

is the algebra of bounded semiclassical pseudodifferential operators defined microlo-
cally in U modulo this equivalence relation. It is interesting to observe that this
equivalence relation has a different meaning in the high-frequency regime. There,
Ψ−∞(X) corresponds to smoothing operators, although they may not be “small”
in the sense of h → 0.

We have the principal symbol map

σh : Ψm(U) → Sm/Sm−1(U),

which gives the left inverse of Opw
h in the sense that

σh ◦Opw
h : Sm(U) → Sm/Sm−1(U)

is the natural projection.
We will use the following well-known semiclassical version of Egorov’s theorem

(see [Ch1, Ch2] or [EvZw] for a proof).
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Proposition 2.1. Suppose U is an open neighbourhood of (0, 0) and κ : U → U is
a symplectomorphism fixing (0, 0). Then there is a unitary operator F : L2 → L2

such that for all A = Opw
h (a),

AF = FB microlocally on U × U,

where B = Opw
h (b) for a Weyl symbol b satisfying

b = κ∗a+O(h2).

F is microlocally invertible in U × U and F−1AF = B microlocally in U × U .

Observe that Proposition 2.1 implicitly identifies a neighbourhood U with its
coordinate representation. In this note, we won’t use that the error is O(h2); only
that it is O(h).

Let Y be another smooth manifold of the same dimension asX, and let V ⊂ T ∗Y
be a non-empty, pre-compact, open set. We say

g : Ψ0/Ψ−∞(U) → Ψ0/Ψ−∞(V )

is an order preserving algebra isomorphism (of algebras filtered by powers of h) if

g(Ψm(U)) = Ψm(V ), g−1(Ψm(V )) = Ψm(U),

and for every A,A′ ∈ Ψm(U), B ∈ Ψm′
(U),

g(A+A′) = g(A) + g(A′) mod Ψ−∞(V ),

g(AB) = g(A)g(B) mod Ψ−∞(V ).

3. The Proof of Theorem 1

We break the proof of Theorem 1 into several lemmas. The first lemma classifies
maximal ideals of S0/S−1 + C (which is the commutative algebra S0/S−1 with a
unit added) in terms of certain equivalence classes of functions.

Lemma 3.1. The maximal ideals of S0/S−1(U) + C are either of the form

Mρ :=
{
p ∈ S0/S−1(U) : p(ρ) = O(h), ρ ∈ U

}
,(3.1)

or

M∂U := S0/S−1(U).(3.2)

Proof. Clearly for each ρ ∈ U , Mρ is a maximal ideal, as is M∂U . In order to prove
these are the only maximal ideals, suppose for contradiction that M is another
maximal ideal which is not of the form (3.1) for any ρ ∈ U . We claim then that
M∂U ⊂ M. To prove this, we observe that for each point ρ ∈ U , there is aρ ∈ M
such that |aρ(ρ)| ≥ C−1 for some C > 0 independent of h. Further, by multiplying
by a constant if necessary, we may assume for each ρ there is a neighbourhood Uρ

of ρ such that Re aρ|Uρ
≥ 1. Let a(x, ξ) ∈ M∂U , and let

K = ess-supp h(a) ⋐ U.

As K is compact, we can cover it with finitely many of the Uρ,

K ⊂ Uρ1
∪ · · · ∪ Uρm

,

and

b :=

m∑
j=1

aρj
∈ M
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satisfies |b| ≥ |Re b| ≥ 1 on K. Thus a/b ∈ M∂U implies

a =
(a
b

)
b ∈ M.

ThusM∂U ⊂ M. ButM∂U is maximal, so eitherM = M∂U orM = S0/S−1(U)+
C. □

The following three lemmas are a semiclassical version of [DuSi] with a few
modifications to the proofs.

Lemma 3.2. Suppose g : Ψ0/Ψ−∞(U) → Ψ0/Ψ−∞(V ) is an order preserving
algebra isomorphism. Then there exists a diffeomorphism κ : U → V .

Proof. We first “unitalize” our algebra of pseudodifferential operators by adding
constant multiples of identity. That is, let

S̃m(U) =
{
a ∈ C∞ ((0, 1]h; C∞

c (U) + C) : |∂αa| ≤ Cαh
−m

}
,

and let Ψ̃m(U) = OPS̃m(U). We extend g to an isomorphism

g̃ : Ψ̃0/Ψ−∞(U) → Ψ̃0/Ψ−∞(V )

by defining for C ∈ C and P ∈ Ψ0(U)

g̃(C + P ) := C + g(P ).

Observe g̃ induces an algebra isomorphism

g0 : S̃0/S−1(U) = S0/S−1(U) + C → S̃0/S−1(V ) = S0/S−1(V ).

Since g0 is an algebra isomorphism, it takes maximal ideals to maximal ideals. We
observe that since g0 : S0/S−1(U) → S0/S−1(V ),

g0(M∂U ) = M∂V .

We can now define a map

κ : U → V

by the following: for ρ ∈ U , define κ(ρ) by

g0(Mρ) = Mκ(ρ).

By applying g−1
0 , we immediately see κ is bijective.

Now for p ∈ S0(U) and ρ ∈ U , observe

p− p(ρ) · 1 ∈ Mρ

implies

g0(p)− p(ρ) · 1 ∈ Mκ(ρ).

Thus

g0(p) (κ(ρ)) = p(ρ) +O(h)

for every ρ ∈ U implies

g0(p) = p ◦ κ−1 +Op(h),

where Op(h) depends on p, but is smooth and uniformly bounded on U since p has
compact support. Hence as a map S0/S−1(U) → S0/S−1(V ),

g0(p) = p ◦ κ−1.
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For each ρ ∈ U , let (x, ξ) be local coordinates for U in a neighbourhood of ρ
which does not meet ∂U . Choosing a suitable cutoff χρ equal to 1 near ρ, the χρxj

and χρξk are approximate coordinates near ρ:

χρxj , χρξk ∈ S0(U) for all j, k;

χρxj = xj , χρξk = ξk near ρ.

Thus

(χρxj) ◦ κ−1 ∈ S0(V ),

and similarly for χρξj for all j. Composing with inverse coordinate functions in a
neighbourhood of κ(ρ) implies κ−1 is smooth on U . The same argument applied to
g−1 shows κ is smooth on V , hence a diffeomorphism. □

Lemma 3.3. The diffeomorphism κ constructed in Lemma 3.2 is symplectic.

Remark. We observe that in this Lemma, the phenomena of transmissions do
not occur as in [DuSi, Lemma 2]. In that case, the diffeomorphism constructed
using the point ideals as in Lemma 3.2 is a diffeomorphism S∗X → S∗Y where
X and Y are n-dimensional manifolds, and the point ideals are contained in the
algebra of functions which are homogeneous of degree 0. It is in proving that the
diffeomorphism lifts to T ∗X \{0} by studying the action on functions homogeneous
of degree 1 that an ambiguity is introduced. Since we are a priori working with
open sets in T ∗X and smooth functions with no homogeneity assumption, no such
ambiguity arises here. To see the relationship between the present result and that
in [DuSi, Lemma 2], by considering symbols homogeneous of degree 1 in, say, a
conic neighbourhood of a point in S∗X, and rescaling h = |ξ|−1 we can apply the
present result to get a localized version of [DuSi, Lemma 2]. But the ambiguity
of the sign of ξ in the rescaling means if we want to lift κ to a diffeomorphism
which commutes with multiplication in the fibers, κ becomes either a homogeneous
symplectomorphism or a homogeneous symplectomorphism composed with the map
(x, ξ) 7→ (x,−ξ), as in [DuSi].

Proof of Lemma 3.3. Observe Ψ0/Ψ−∞(U) is a Lie algebra with brackets ih−1[·, ·],
and g induces a Lie algebra isomorphism with Ψ0/Ψ−∞(V ). S0(U) is a Lie al-
gebra with brackets {·, ·}, hence g0 is a Lie algebra isomorphism S0/S−1(U) →
S0/S−1(V ). Let a, b ∈ S0(U) and calculate

g0({a, b}) = {g0(a), g0(b)} ,
or

({a, b}) ◦ κ−1 = {a ◦ κ−1, b ◦ κ−1}.
Letting a and b run through local approximate coordinates implies κ−1 is symplec-
tic. □

Now fix Ũ ⋐ U , and let

F : L2(Ũ) → L2(Ṽ ) = L2(κ(Ũ))

be a microlocally unitary h-Fourier integral operator associated to κ as in Propo-

sition 2.1. We define an automorphism of Ψ0/Ψ−∞(Ũ), g1, by

g1(P ) = F−1g(P )F.(3.3)

Observe g1 is both order-preserving and preserves principal symbol.
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Lemma 3.4. Suppose

g1 : Ψ0/Ψ−∞(Ũ) → Ψ0/Ψ−∞(Ũ)

is an order-preserving automorphism which preserves principal symbol. Then there

exists B ∈ Ψ0(Ũ), elliptic on Ũ such that

g1(P ) = BPB−1 mod O(h∞)(3.4)

for every P ∈ Ψ0/Ψ−∞(U).

Proof. The proof will be by induction, constructing B in orders of h. We then use
Borel’s lemma to conclude that B is asymptotic to the series in these orders of h,

up to microlocal equivalence. We drop the dependence on Ũ since the lemma is
concerned with automorphisms. Suppose for l ≥ 1 we have for every m and every
P ∈ Ψm

g1(P )− P ∈ Ψm−l.

This induces a map

β : Sm/Sm−1 → Sm−l/Sm−l−1,

which, using the Weyl composition formula (2.1), satisfies

(i) β(pq) = β(p)q + pβ(q);

(ii) β({p, q}) = {β(p), q}+ {p, β(q)}.
Consider the action of β on S0, and observe from property (i) above, for p, q ∈ S0,

β(pq) = β(p)q + pβ(q) ∈ S−l,

so β is hl times a derivation on S0.
For any ρ ∈ U , we choose coordinates (x, ξ) near ρ, and a cutoff χρ which is

equal to 1 near ρ and compactly supported in U . Then χρxj and χρξj become
approximate coordinates which are equal to xj and ξj near ρ but are in S0. Near
ρ, β takes the form

β = hl
∑
j

(
γj(x, ξ)∂xj

+ δj(x, ξ)∂ξj
)
,

where γj = h−lβ(χρxj) and δj = h−lβ(χρξj) (here γj and δj implicitly depend on
h, although we don’t explicitly write it). Using property (ii) above, we have near ρ

β({χρxj , χρξk}) = β({χρxj , χρxk}) = β({χρξj , χρξk}) = 0

which implies

∂γj
∂xk

= −∂δk
∂ξj

,
∂γj
∂xk

=
∂γk
∂xj

, and
∂δj
∂ξk

=
∂δk
∂ξj

.

Thus there exists a locally defined smooth function f such that

γj =
∂f

∂ξj
and δk = − ∂f

∂xk
,

and locally

h−lβ = Hf .

The function f can be extended to be defined on all of U by the assumption that
H1(U,C) = 0. Define a smooth function b by

b = exp(−iχf),
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for a cutoff χ which is identically 1 on Ũ with support in U , so that df = idb/b on

Ũ , and

β = hlHi log b.

Let B = Opw
h (b) and observe the principal symbol of

B−1PB − P = B−1[P,B]

in the S0(Ũ) calculus is

h

i
b−1{p, b} = hHi log b(p).

For the base case of our induction, if P ∈ Sm(Ũ), then

g1(P )−B−1PB ∈ Sm−2(Ũ),

so that

Bg1(P )B−1 − P ∈ Sm−2(Ũ).

Replace g1(P ) with Bg1B
−1.

Now for the purposes of induction, assume

g1(P )− P ∈ Sm−l(Ũ),

and apply the above argument to get Bl ∈ S−l so that

g1(P )−B−1
l PBl ∈ Sm−l−1(Ũ).

Then replacing g1(P ) with Blg1(P )B−1
l finishes the induction. Thus there exists

B ∈ S0(Ũ) so that

Bg1(P )B−1 = P mod O(h∞).

□

Theorem 1 now follows immediately from applying Proposition 2.1 to (3.3) and
(3.4).

4. An Example

The current paper (and indeed the paper of Duistermaat-Singer [DuSi] on which
this paper is based) largely skirts a very important related question by assuming
H1(U,C) = 0. In this section we briefly consider a simple example which helps
illustrate the necessity of this condition in general. We consider the following simple
question: given a symplectomorphism κ : U → κ(U), is there a unitary operator
which quantizes κ? More precisely, we investigate whether or not there is a unitary
h-FIO which satisfies a Egorov type law.

Specifically, if κ : U → κ(U) is a symplectomorphism, we say a (microlocally)
unitary2 h-FIO F is of Egorov type if it satisfies a sharp Egorov conjugation law in

the Weyl calculus: for A ∈ Ψl,0
h ,

A(x, hD)F = FB(x, hD)

2Here “unitary” refers to unitary on a fixed Hilbert space, typically L2 of the base space, or
of a compact subset thereof. “Microlocally” refers to the possibility that the Hilbert space is

weighted with some pseudodifferential cutoffs.
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where σ(B) = κ∗σ(A) + eA, with

eA ∈ Sl−2,−2,

with microsupport contained in the microsupport of κ∗σ(A) (see [Ch1] for notation
and definitions). In the microlocal setting discussed in the previous sections, U is
precompact, so this just means Sl,m(U) = Sm(U) in the notation from the previous
sections, and hence eA = O(h2).

Proposition 4.1. Suppose X = S1, U = T ∗X ≃ S1x×Rξ equipped with the standard
symplectic structure, and

κ(x, ξ) = (x, ξ + β)

for β ∈ R. Then there exists an h-FIO F of Egorov type quantizing κ, unitary on
L2(S1), if and only if β ∈ hZ.

Remark. Pullback by the symplectomorphism κ from Proposition 4.1 clearly de-
fines an order-preserving automorphism of the symbol algebra, preserving both the
order in h and in ξ. If we microlocalize everything in the following proof, that
means it is order-preserving in h as discussed in the previous sections.

Proposition 4.1 should come as no surprise. In fact, from the point of view of
geometric quantization, there is a pre-quantization for every element in H1(U,T1),
the first cohomology group with coefficients in the unitary group. They differ by
an overall phase factor of ei2πβ/h for 0 ≤ β < h. That is, for β /∈ hZ, conju-
gation by a unitary h-FIO quantizing κ is an isomorphism between inequivalent
pre-quantizations, and hence should not be an automorphism.

Proof. If β ∈ hZ, then there is a global generating function for κ, and it is trivial
to quantize κ. In fact, a unitary h-FIO quantizing κ is given by multiplication by
eiβx/h, which is certainly 2π-periodic, unitary, and satisfies and exact Egorov type
transformation law (see (4.2) below).

The proof of the reverse implication proceeds by contradiction. If there is such
an operator, we lift it to the universal covering space and, by an approximate
uniqueness result, we conclude that the operator must be given by multiplication
by eiβ(x+2πj)/h for some j ∈ Z, modulo a lower order term. But multiplication by
eiβ(x+2πj)/h preserves periodicity of a function if and only if β ∈ hZ.

For the purposes of contradiction, assume β /∈ hZ and suppose there is never-
theless a unitary Egorov-type h-FIO F quantizing κ. That is, for u(x) ∈ L2(S1),
Fu ∈ L2(S1) with ∥Fu∥ = ∥u∥, F ∗ = F−1, and for all pseudodifferential operators

A ∈ Ψl,0
h (S1), there is a pseudodifferential operator eA ∈ Ψl−2,−2

h (S1) so that

AF = F (Ã+ eA),

where σ(Ã)(x, ξ) = κ∗σ(A)(x, ξ) = σ(A)(x, ξ + β). The universal covering space
of S1 is R, so we want to compare F to operators acting (locally) on L2(R). We
regard L2(S1) as a vector subspace of S ′(R), that is, 2π-periodic functions on the
real line which are square-integrable over one period. We lift F to an operator on
L2(S1) ⊂ S ′(R) which is unitary over any interval of length 2π by partitioning R
into intervals of length bounded by 2π. That is, the lift of F acting on a function
supported in an interval of length 2π is F acting on the 2π periodic extension. This
is well-defined up to smoothing operators of order h∞ according to the assumption
that F is of Egorov type. We abuse notation and continue to call this lift F .
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Fix s0 ∈ R, and let a(x) ∈ C∞
c ([s0, s0 +2π]). Since a is supported in one period,

we have a Egorov transformation rule:

(4.1) a(x)F = F (a(x) + ea)

for ea ∈ Ψ−2,−2
h (S1), since κ is identity in the x variable. The operator a(x)F now

maps L2(S1) to L2([s0, s0 + 2π]) (with no periodic extension), and by (4.1), a(x)F
also maps L2([s0, s0 + 2π]) into L2([s0, s0 + 2π]).

Consider now the multiplication operators

Fj = eiβ(x+2πj)/h

for j ∈ Z, acting on L2(R). Clearly Fj is unitary on L2(I) for any interval I ⊂ R,
and Fj satisfies the exact Egorov law

A(x, hD)Fju(x) = (2πh)−1

∫
ei(x−y)ξ/hA((x+ y)/2, ξ)eiβ(y+2πj)/hu(y)dydξ

= (2πh)−1eiβ(x+2πj)/h

∫
ei(x−y)(ξ−β)/hA((x+ y)/2, ξ)u(y)dydξ

= FjA(x, hD + β)u(x).(4.2)

Multiplying by the compactly supported function a(x), we have

aFj = Fja

with no error term. If we choose a real,

(aFj)
∗ = F ∗

j a = e−iβ(x+2πj)/ha = ae−iβ(x+2πj)/h,

so that

(aF )(aFj)
∗ = aFaF ∗

j

= a2FF ∗
j − aFeaF

∗
j

= (a2 − aẽa)FF ∗
j

for a pseudodifferential operator ẽa ∈ Ψ−2,−2
h ([s0, s0 + 2π]). We now claim that

there is a constant cj , |cj | = 1, and a pseudodifferential operator Ea,j ∈ Ψ−2,−2
h (R)

so that

a2FF ∗
j = cja

2(I + Ea,j).

as operators on L2([s0, s0+2π]). Indeed, we have a2FF ∗
j ∈ Ψ0,0

h (R) is a semiclassical
pseudodifferential operator,

a2FF ∗
j x = a2(x+ e1)FF ∗

j , e1 ∈ Ψ−2,−2
h (R),

and

a2FF ∗
j hD = a2(hD + e2)FF ∗

j , e2 ∈ Ψ−1,−2
h (R),

which implies the principal and sub-principal symbol of a2FF ∗
j is a constant times

a2. Since (FF ∗
j )

∗ = (FF ∗
j )

−1 on supp (a2), we know this constant has modulus 1.

This tells us that, at least for part of a period, F is multiplication by eiβ(x+2πj)/h

for some j, up to errors of size h2. The next step is to show that this is true for
a whole period. That is, let a1 + a2 ≡ 1 on [0, 2π], but with each al supported in
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an interval of length less than 2π so that the above discussion applies to each al.
Then we calculate

(a1 + a2)F (c1a1Fj1 + c2a2Fj2)
∗

= (a1 + a2)F (c1a1F
∗
j1 + c2a2F

∗
j2)

= (a1 + a2)F (c1a1e
−i2πβj1/hF ∗

0 + c2a2e
−i2πβj2/hF ∗

0 )

= (a1 + a2)(c1a1e
−i2πβj1/h + c2a2e

−i2πβj2/h)FF ∗
0(4.3)

plus errors of size h2 which we neglect for the rest of the calculation. This operator
now a priori is defined on L2(R), but if we compose with another function b sup-
ported in [0, 2π], but b ≡ 1 in a neighbourhood of supp (a1)∩supp (a2), we conclude
we must have

(4.4) (c1a1e
−i2πβj1/h + c2a2e

−i2πβj2/h) = 1 +O(h2)

on {a1 + a2 = 1}. That is, replacing a2 with 1− a1 on supp (a1) ∩ supp (a2), (4.4)
must be independent of a1 up to O(h2), so that

c1
c2

= ei2πβ(j2−j1)/h(1 +O(h2)),

or c1 and c2 differ to leading order only by a phase shift. Without loss of generality,
we write c1 = 1 +O(h2) and c2 = e−i2πβj/h(1 +O(h2)) in the calculation leading
to (4.3) to get

(a1 + a2)F (a1F0 + c2a2F0)
∗ = (a1 + a2)(a1 + ei2πβj/ha2)FF ∗

0 .

But by the above argument this implies that either j = 0 or β = O(h3).
This implies the h-FIO F is equal to a unimodular constant times one of the

Fj on any interval of length 2π, which is a whole period, and hence F cannot be
periodic.

□
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[DiSj] Dimassi, M. and Sjöstrand, J. Spectral Asymptotics in the Semi-classical Limit. Cam-
bridge University Press, Cambridge, 1999.

[DuSi] Duistermaat, J. J., and Singer, I. M. Order-Preserving Isomorphisms Between Alge-

bras of Pseudo-Differential Operators. Commun. Pure Appl. Math. 29, (1976), 39–47.

[EvZw] Evans, L.C. and Zworski, M. Lectures on Semiclassical Analysis.
http://math.berkeley.edu/∼evans/semiclassical.pdf.

[Zel] Zelditch, S. Quantum Maps and Automorphisms. The breadth of symplectic and Pois-
son geometry, Prog. Math.,232. (2005), 623–654.

Massachusetts Institute of Technology, Department of Mathematics, 77 Mass. Ave.,
Cambridge, MA 02139-4307, USA

Email address: hans@math.mit.edu


