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Abstract. We study the existence and stability of ground state solutions or solitons to a nonlinear

stationary equation on hyperbolic space. The method of concentration compactness applies and shows
that the results correlate strongly to those of Euclidean space.

1. Introduction

In this note, we explore the existence of positive bound state solutions to the nonlinear Schrödinger
equation on hyperbolic space (Hd-NLS){

iut + ∆Hdu+ f(|u|)u = 0, Ω ∈ Hd
u(0,Ω) = u0(Ω),

(1.1)

where ∆Hd is the (non-positive definite) Hyperbolic Laplacian and

f(s) = sp

for 4
d−2 > p > 0. Specifically, we seek to find solutions of the form

u(t,Ω) = eiλtRλ(Ω),

where Rλ is a solution for the resulting stationary problem

−∆HdRλ + λRλ −Rp+1
λ = 0.(1.2)

Our main result is the following theorem. Here and in the sequel, we adopt the convention that for d = 2,
p < 4/(d− 2) means p <∞.

Theorem 1. Fix d ≥ 2. For all λ > (d− 1)2/4, 4
d−2 > p > 0, there exists a solution to (1.1) of the form

u(t,Ω) = eiλtRλ(Ω),

where Rλ is a positive, decreasing, spherically symmetric solution of the equation (1.2).

Remark 1.1. At the time of announcing this result, the authors have been informed of a brief note by A.
Pankov [Pan92] outlining a proof of a similar result.

Remark 1.2. The hypothesis p < 4/(d− 2) is the H1-energy sub-critical regime. The result in Theorem
1 is precisely analogous to the existence of ground states for Schrödinger equations on Euclidean space.
The key here is that although the results are not drastically different in the case of hyperbolic geometry,
there are subtle difficulties that must be overcome. However, as will be seen in the sequel, with the correct
formulation the existence of solutions Rλ will be almost automatic due precisely to the nature of the
background geometry at infinity. Hence one is able to show existence of such solutions for in fact a rather
larger class of nonlinearities which actually grow exponentially at infinity (see Section 7).
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Remark 1.3. In this note we analyze the existence and stability of ground state solutions, Rλ, but we
say nothing about the uniqueness of such a solution. There exists a very rich history of uniqueness proofs
in the Euclidean case using shooting methods on the radial problem, which we believe should apply in
this case as well. For a survey of uniqueness results, see [McL93]. In addition, there are many interesting
questions surrounding bound states once they are shown to exist, for instance the existence of a specific
blow-up profile for a critical nonlinearity, if the hyperbolic geometry provides one with asymptotic stability
for a wider range of nonlinearities due to the stronger dispersion, and many others.

1.1. Hyperbolic Space. There are several equivalent definitions of Hd. The most intuitive is as an
embedded hyperboloid in Rd+1:

Hd = {v = (v0, v
′) ∈ R1+d|〈v, v〉 = 1, v0 > 0},

where

〈v, v〉 = v2
0 − |v′|2 = v2

0 − (v2
1 + · · ·+ v2

d).

The Lorenzian metric on Rd,

dl2 = dv2 − dv2
0 ,

restricts to a positive definite metric on Hd, called the hyperbolic metric. This manifold is isometric to the
upper half space

{x ∈ Rd : x1 > 0}

equipped with the metric

ds2 =
dx2

x2
1

,

as well as to the Poincaré ball model:

Hd = {z ∈ Rd : |z| < 1}

with the metric

ds2 =
4dz2

(1− |z|2)2
.

In this note, we wish to exploit certain spherical symmetries, so we use the polar model:

Hd = {(t, x) ∈ R1+d|(t, x) = (cosh(r), sinh(r)ω), r ≥ 0, ω ∈ Sd−1}.

From the polar coordinate parametrization of Hd, we see

dt = sinh(r)dr, dx = cosh(r)ωdr + sinh(r)dω,

giving the metric

ds2 = dr2 + sinh2 rdω2

from the standard Lorenzian metric restricted to Hd. Hence, we see

∆Hd = ∂2
r + (d− 1)

cosh r

sinh r
∂r +

1

sinh2 r
∆Sd−1 .(1.3)

It is a standard exercise in differential geometry to show hyperbolic space has constant sectional curva-
tures all equal to −1.
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1.2. Sketch of the proof. In hyperbolic space, we have the conserved quantities

Q(u) =

∫
Hd

|u|2dΩ

and

E(u) =

∫
Hd

(
|∇Hdu|2 − 2

p+ 2
|u|p+2

)
dΩ,(1.4)

and the approach of this paper is to realize solitons as minimizers for certain constrained minimization
problems related to these quantities, and mimic the arguments used in the Euclidean setting.

We use the polar representation of Hd, in which case the hyperbolic Laplacian ∆Hd can be conjugated
to the Euclidean Laplacian ∆Rd , modulo a potential term and an angular offset term (see Section 4
below). After this conjugation, we are left with an equivalent optimization problem in Euclidean space (see
(4.2)). This minimization problem has an awkward angular term, so it is greatly simplified by assuming
spherical symmetry of a minimizing sequence. To prove this simplification is justified, we first prove
any minimizing sequence of the problem in hyperbolic space may be replaced by one that is spherically
symmetric. Conjugating the problem to Euclidean space amounts to replacing the minimizing sequence
with the sequence multiplied by a positive, radial function, so conjugation preserves the spherical symmetry.
Then we study the minimization problem in Euclidean space assuming spherical symmetry, in which case
it is equivalent to a minimization problem with the standard Euclidean Laplacian. Finally, that the
minimization problem may be reduced to the spherically symmetric case follows from a rearrangement
inequality from [Dra05] presented in Section 3.

1.3. Acknowledgments. H. C. was partially supported by an NSF Postdoctoral Fellowship while in resi-
dence at the Mathematical Sciences Research Institution (MSRI), program “Analysis on Singular Spaces”.
J.M. was partly supported by a National Science Foundation Postdoctoral Fellowship at Columbia Univer-
sity and partly by the Hausdorff Center for Mathematics at the University of Bonn. The authors wish to
thank Gigliola Staffilani, Herbert Koch, Michael Taylor, and Michael Weinstein for helpful conversations,
as well as Vedran Sohinger and the reviewers for a careful reading of the draft and helpful suggestions.
In addition, the second author would like to thank Jason Metcalfe and the University of North Carolina,
Chapel Hill for graciously hosting him during part of this research.

2. Previous Results

In this section, we summarize known results for soliton existence in Rd and some of the recent work on
HNLS.

We first recall the relevant definitions for solitons in Euclidean space. Let u(t, x) be a solution to the
following Euclidean nonlinear Schrödinger equation (NLS):{

iut + ∆Rdu+ f(|u|)u = 0, x ∈ Rd
u(0, x) = u0(x),

(2.1)

where ∆Rd is the (non-positive definite) Laplacian and

f(s) = sp

for 4
d−2 > p > 0.

A soliton solution in Euclidean space is of the form

u(t, x) = eiλtRλ(x)
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where λ > 0 and Rλ(x) is a positive, spherically symmetric, exponentially decaying solution of the equation

∆Rλ − λRλ + f(Rλ)Rλ = 0.(2.2)

There are two conserved quantities for sufficiently regular solutions u to NLS:

Q(u) :=

∫
Rd

|u|2dx

and

E(u) :=

∫
Rd

(
|∇u|2 − F (|u|)

)
dx,

where F (|u|) = |u|p+2/(p + 2) (more general nonlinearities can also be considered by replacing F with
the integral of f ; see Section 7 for a discussion of other nonlinearities in the case of hyperbolic space
studied in this paper). With this type of power nonlinearity, soliton solutions exist and are known to be
unique. Existence of solitary waves for a wide variety of nonlinearities is proved in [BL83] by minimizing
the quantity

T (u) =

∫
Rd

|∇u|2dx

with respect to the constraint

V (u) := −δ
2

2

∫
Rd

|u|2dx+

∫
Rd

F (|u|)dx = 1.

Then, using a minimizing sequence and Schwarz symmetrization, one sees the existence of the nonnegative,
spherically symmetric, decreasing soliton solution. For uniqueness, see [McL93], where a shooting method
is implemented to show that the desired soliton behavior only occurs for one particular initial value.

An important fact for these soliton solutions is that Qλ = Q(Rλ) and Eλ = E(Rλ) are differentiable
with respect to λ. This fact can be determined from the early works of Shatah, namely [Sha83], [Sha85].
By differentiating Equation (2.2), Q and E with respect to λ, we have

∂λEλ = −λ∂λQλ.

Variational techniques developed by [Wei85] and [Wei86] and generalized in [GSS90] and [SS85] tell us
that when β(λ) = Eλ + λQλ is convex, or β′′(λ) > 0, we are guaranteed orbital stability as will be defined
in the sequel (see Section 6) under small perturbations, while for β′′(λ) < 0 we are guaranteed that the
soliton is unstable under small perturbations.

In this note we expand these results on bound states to Hd, following the work of Banica on well-
posedness for focusing-HNLS in [Ban07]. The subsequent works of Banica-Carles-Staffilani ([BCS08]),
Banica-Carles-Duyckaerts ([BCD09]), and Ionescu-Staffilani ([IS08]) study the questions of global well-
posedness of the defocusing and focusing-HNLS, though methods there apply broadly to questions of
local well-posedness. In both the focusing and defocusing cases, the results parallel the Euclidean space
results quite well, especially in dimension 3. We recall the results below only for Hd, but for a collection
of comparable results in Rd, see the references contained within [Ban07], [BCS08], [IS08] or a general
presentation of the theory is done quite nicely in the book by Sulem-Sulem ([SS99]).

In [Ban07], the following theorem is proved, which states roughly that well-posedness (existence, unique-
ness and Lipschitz dependence upon initial data) in H1 and theory of blow-up (typically classified as a
singularity for the quantity

∫
|∇u|2dx reached in finite time) for (1.1) are comparable to the results for the

focusing, monomial nonlinear Schrödinger equation in Rd. Specifically, it is stated that for p < 4
d , there

is global well-posedness and for p ≥ 4
d there is local well-posedness but also the possibility of finite time

blow-up. These statements are collected in the following theorem.
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Theorem 2 (Banica). For p < 4
d the solutions to equation (1.1) with f(s) = sp are global in H1(Hd).

Global existence still holds for the power p = 4
d with initial data of mass smaller than a certain constant.

However, for p ≥ 4
d , blow-up solutions exist. More precisely, if the initial data is radial and of finite

variance ∫
Hd

|u0(Ω)|2dist2(0,Ω)dΩ <∞

and its energy satisfies

E(u0) < cd‖u0‖2L2 ,

then the solution blows up in finite time. Here, cd is a geometric positive constant given by

cd =
inf ∆2

Hddist(0, ·)
16

.

This theorem allows for blow-up even for null energy solutions, which differs from the standard Glassey-
type blow-up results for NLS on Euclidean space.

Recall that scattering to u± for a solution to HNLS means that such a solution u(t, x) satisfies

‖u(t)− ei(t−t0)∆Hdu±‖L2 → 0 as t→ ±∞.
The idea is that asymptotically the nonlinear problem is essentially controlled by the linear component. A
wave operator W± is a well-defined map from the scattering data to data at time t0:

W±u± = u(t0).

Wave operators are injective by uniqueness, and we say asymptotic completeness occurs if they are also
surjective. Obviously, this is not possible in the focusing case due to the existence of bound states as
described in this paper.

For the defocusing equation, we state the following theorems here as the techniques used to prove
Theorem 3 apply to the focusing problem when analyzing local well-posedness. As a result, they are
applicable when proving persistence of radiality for solutions of HNLS.

In [BCS08], the following theorem about scattering for the defocusing, monomial nonlinear Schrödinger
equation on Hd is proved.

Theorem 3 (Banica-Carles-Staffilani). Let d ≥ 2, 0 < p < 4
d and t0 ∈ R. There exists ε = ε(d, p) such

that if ϕ ∈ L2
r(Hd) with ‖ϕ‖L2 < ε, then (1.1) with f(s) = −sp and u|t=t0 = ϕ has a solution

u ∈ C(R;L2) ∩ L2+p(R×Hd).
Moreover, ‖u(t)‖L2 = ‖ϕ‖L2 for all t ∈ R. There exist u± ∈ L2

r(Hd) such that

‖u(t)− ei(t−t0)∆Hdu±‖L2 → 0 as t→ ±∞.
If we take initial time t0 = −∞ (resp. t0 =∞), then u− = ϕ (resp. u+ = ϕ).

Also in [BCS08], the following theorem is proved.

Theorem 4. Let d ≥ 2, 0 < p < 4
d−2 and t0 = −∞. For any ϕ = u− ∈ H1

r (Hd), there exists T <∞ such

that the Cauchy integral formulation of (1.1) with f(s) = −sp has a solution

u ∈ C(R;L2) ∩ L∞([−∞,−T ];H1) ∩ L2+p([−∞,−T ];W 1,p+2).

Moreover, this solution u is defined globally in time; u ∈ L∞(R;H1). That is, u is the only solution to
(1.1) with f(s) = −sp such that

‖u(t)− ei(t−t0)∆Hdu−‖H1 = ‖e−i(t−t0)∆Hdu(t)− u−‖H1 → 0 as t→∞.
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In addition, the authors prove H1 asymptotic completeness in the case d = 3.

In [IS08], the following theorem is proved.

Theorem 5. Let d ≥ 2, 0 < p < 4
d−2 and q ∈ (2, (2d+ 4)/d] is fixed.

a. If u0 ∈ H1(Hd) then there exists a unique global solution u ∈ C(R;H1(Hd)) of (1.1) with f(s) = −sp.
In addition for T ∈ [0,∞), the mapping

u0 → eiT∆Hd (u0) = 1(−T,T )(t) · u

is a continuous mapping from H1 to S1
q (−T, T ) and the conservation laws are satisfied, where

S1
q (I) =

{
f ∈ C(I : L2(Hd)) : ‖f‖S1

q
= ‖(−∆Hd)

1
2 (f)‖S0

q (I) <∞
}
,

S0
q (I) =

{
f ∈ C(I : H1(Hd)) : ‖f‖S0

q
= sup

[
‖f‖L∞,2

I
, ‖f‖Lq,r

I
, ‖f‖Lq,q

I

]
<∞

}
,

and

r =
2dq

dq − 4
.

b. Asymptotic completeness occurs in H1.

Similar scattering results are obtained in the concurrent work [AP08]. It should be noted that in the
case of defocussing nonlinearities in Euclidean space, scattering is only proved for L2-supercritical but
H1-subcritical powers, making the result far stronger for defocussing HNLS.

3. Radiality Assumption

As mentioned in the introduction, the proof of Theorem 1 relies on conjugating ∆Hd into an operator on
Euclidean space, and then finding minimizers for the energy functional in (4.2). The problem of minimizing
the functional (4.2) is greatly simplified assuming the functions involved depend only on the radius r = |x|,
as then the minimization theory in Rd may be used, since the term involving the angular derivatives
vanishes. The purpose of this section is to justify such a simplification. Let us define a space H1

r to be the
space of all spherically symmetric functions in H1.

The next lemma shows that spherically symmetric initial data implies a spherically symmetric solution
to HNLS.

Lemma 3.1. Let u be a solution to (1.1) with initial data u0 ∈ H1
r and the nonlinearity f(|u|)u = |u|pu

with 4
d−2 > p > 0. Then u ∈ H1

r .

The proof of this lemma is by uniqueness, which follows from the implicit local uniqueness following
from the Strichartz estimates in [IS08].

Given Lemma 3.1, we show that any minimizer of (1.4) may be replaced by one that is spherically
symmetric, so that we may neglect the angular derivative. To do this, we modify the standard argument
of [LL01, Lemma 7.17] in Rd, using heat kernel arguments to show symmetric decreasing rearrangement
or Schwarz symmetrization lowers the kinetic energy in Hd. The symmetric decreasing rearrangement on
Hd is given by

f∗(Ω) = inf{t : λf (t) ≤ µ(B(dist (Ω, 0)))},
where µ is the natural measure on Hd, dist is the hyperbolic distance function on Hd and

λf (t) = µ({|f | > t}).
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First of all, it is clear f∗ is spherically symmetric, nonincreasing, lower semicontinuous and

‖f∗‖Lp(Hd) = ‖f‖Lp(Hd)

for any 1 ≤ p ≤ ∞.

Lemma 3.2. Suppose f ∈ H1(Hd), and f∗ is the symmetric decreasing rearrangement of f . Then

‖∇f∗‖L2(Hd) ≤ ‖∇f‖L2(Hd).

Proof. We use standard Hilbert space theory as in [LL01]. Namely, we observe that the kinetic energy
satisfies

‖∇f‖L2(Hd) = lim
t→0

It(f),

where

It(f) = t−1[(f, f)Hd − (f, e∆Hd tf)Hd ]

and (·, ·)Hd is the natural L2 inner-product on Hd. As (f, f) = (f∗, f∗) by construction, we need

(f∗, e∆Hd tf∗)Hd ≥ (f, e∆Hd tf)Hd

in order to see that symmetrization decreases the kinetic energy. In Rd, this is done using convolution
operators and the Riesz rearrangement inequality, which we do not have here. Instead, we use Lemma
3.3 and an application of Theorem 6 with Ψ(f1, f2) = f1f2 and K12 = pd(ρ, t) to finish the proof of the
lemma. �

Lemma 3.3. For each t > 0, the heat kernel on hyperbolic space, pd(ρ, t), is a decreasing function of the
hyperbolic distance ρ.

Proof. This follows from Proposition 3.1 and the recursion relations in Theorem 2.1 in [DM88]. Specifically,
H1 is isometric to R with the metric dx2, so the heat kernels are the same:

p1(ρ, t) = (4πt)−1/2e−ρ
2/4t,

and we have the recurrence relations (see [DM88, Theorem 2.1])

pd+1(σ, t) = −(4π)−1 ∂

∂σ
pd−1(σ, t) and(3.1)

1

2
pd(σ, t) =

∫ ∞
σ

pd+1(λ, t)(λ− σ)−1/2dλ,(3.2)

where σ is related to the hyperbolic distance ρ by

σ = [cosh(ρ/2)]2.

Since cosh is a monotone increasing function for ρ ≥ 0, it suffices to prove the lemma with σ in place of ρ.
Further, from [DM88, Proposition 3.1], we have pd ≥ 0 for d odd, so (3.2) implies pd ≥ 0 for d even as well.
Then (3.1) indicates that the derivative of pd−1 is a negative multiple of pd+1, and hence is negative. �

From [Dra05], we have used the following theorem.

Theorem 6 (Draghici [Dra05]). Let X = Hd, fi : X → R+ be m nonnegative functions, Ψ ∈ AL2(Rm+ ) be
continuous and Kij : [0,∞)→ [0,∞), i < j, j ∈ {1, . . . ,m} be decreasing functions. We define

I[f1, . . . , fm] =

∫
Xm

Ψ(f1(Ω1), . . . , fm(Ωm))Πi<jKij(d(Ωi,Ωj))dΩ1 . . . dΩm.

Then, the following inequality holds:

I[f1, . . . , fm] ≤ I[f∗1 , . . . , f
∗
m].
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4. Reduction to an Euclidean Operator

In this section we begin to analyze HNLS in the case f(|u|)u is a so-called “focusing” nonlinearity. From
the polar form of ∆Hd , we approach the problem by comparison to the standard Laplacian on Rd. In this
direction, let us recall that the metric for Rd in polar coordinates is given by

ds2 = dr2 + r2dω2,

so that the Jacobian is rd−1. Similarly, the Jacobian from the polar coordinate representation of Hd is
sinhd−1 r. We employ an isometry T taking L2(rd−1drdω) to L2(sinhd−1 rdrdω), so that T−1(−∆Hd)T is
a non-negative, unbounded, essentially self-adjoint operator on L2(Rd).

We define

ϕ(r) =
( r

sinh r

) d−1
2

,

ϕ−1(r) =

(
sinh r

r

) d−1
2

,

and take Tu = ϕu. Conjugating −∆Hd by ϕ, we have a second order differential operator on Rd with the
leading order term almost the Laplacian on Rd. Indeed, we first calculate

∂rϕ =
d− 1

2

( r

sinh r

) d−3
2

(
sinh r − r cosh r

sinh2 r

)
,

∂2
rϕ =

(
d− 1

2

)(
d− 3

2

)( r

sinh r

) d−5
2

(
sinh r − r cosh r

sinh2 r

)2

+
d− 1

2

( r

sinh r

) d−3
2

(
2r sinh r cosh2 r − 2 sinh2 r cosh r − r sinh3 r

sinh4 r

)
,

so that

ϕ−1(−∆Hd)(ϕu) = ϕ−1(−∂2
r − (d− 1)

cosh r

sinh r
∂r −

1

sinh2 r
∆Sd−1)(ϕu)

= −∂2
ru− 2ϕ−1∂rϕ∂ru− ϕ−1∂2

rϕu− (d− 1)
cosh r

sinh r
∂ru− (d− 1)

cosh r

sinh r
ϕ−1∂rϕu

− 1

sinh2 r
∆Sd−1u

= −∂2
ru−

(
2ϕ−1∂rϕ+ (d− 1)

cosh r

sinh r

)
∂ru−

1

sinh2 r
∆Sd−1u

−
(
ϕ−1∂2

rϕ+ (d− 1)
cosh r

sinh r
ϕ−1∂rϕ

)
u

= −∂2
ru+ V0(r)∂ru+

[
Vd(r) +

(
d− 1

2

)2
]
u− 1

sinh2 r
∆Sd−1u

= −∆̃u+

[
Vd(r) +

(
d− 1

2

)2
]
u.
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Here

V0(r) =
1− d
r

,

Vd(r) =

(
d− 1

2

)(
d− 3

2

)
1

sinh2 r
−
(
d− 1

2

)(
d− 3

2

)
1

r2

=
(d− 1)(d− 3)

4

(
r2 − sinh2 r

r2 sinh2 r

)
,

so that

−∆̃ = −∆Rd − r2 − sinh2 r

r2 sinh2 r
∆Sd−1 .

For completeness, we record the following simple lemma.

Lemma 4.1. The function

Ṽ =
sinh2 r − r2

r2 sinh2 r
satisfies the following properties:

(i) Ṽ ∈ C∞(R),

(ii) Ṽ ≥ 0,

(iii) Ṽ (0) =
1

3
,

(iv) Ṽ = O(r−2), r →∞, and

(v) Ṽ ′(r) = 0 only at r = 0.

Remark 4.1. Note that the potential V3 = 0, and the lemma implies V2 ≥ 0 has a “bump” at 0, while for
d ≥ 4, the potential Vd ≤ 0 has a “well” at 0.

Proof. Properties (i), (ii), and (iii) follow easily from Taylor expansions and the fact that sinh r ≥ r for

r ≥ 0. To prove the only critical point is the origin, we observe Ṽ ′(r) = 0 if and only if

cosh r

sinh3 r
=

1

r3
,

so we consider
sinh r

cosh1/3 r
= r.

As this equation is satisfied for r = 0, if we can show the derivative of the left hand side is greater than 1
for r > 0 we are done. Differentiating the left hand side, setting it equal to 1 and rearranging we have the
equation

8 cosh6 r − 15 cosh4 r + 6 cosh2 r + 1 = 0.

Substituting z = cosh2 r, we have the third order polynomial equation

8z3 − 15z2 + 6z + 1 = 0,

which factorizes as

(z − 1)2(8z + 1) = 0.

The only solutions to this satisfying z = cosh2 r are z = 1, since cosh r ≥ 1, and the only value of r which

satisfies this is r = 0. Hence the only critical point of Ṽ is at r = 0. �
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After this conjugation to Rd, (1.1) becomes{
−iut − ∆̃u+ (d−1)2

4 u+ Vd(x)u− f̃(x, u) = 0, x ∈ Rd
u(0, x) = u0(x) ∈ H1,

(4.1)

where now the nonlinearity f̃ takes the following form after conjugation:

f̃(x, u) = ϕ−1f(ϕu)(ϕu)

=
( r

sinh r

) p(d−1)
2 |u|pu.

We have the naturally defined conserved quantities

Q(u) = ‖u‖2L2

and

E(u) =

∫
Rd

[
1

2
|∇u|2 +

1

2
a(x)|∇angu|2 +

1

2

(
Vd(|x|) +

(d− 1)2

4

)
|u|2 − F (x, u)

]
dx,(4.2)

where

a(x) =
|x|2 − sinh2 |x|
|x|2 sinh2 |x|

is the “offset” of the spherical Laplacian in the definition of ∆̃,

F (x, u) =

∫ u(x)

0

f̃(x, s)ds

=
1

p+ 2

(
|x|

sinh |x|

)(d−1)p/2

|u|p+2

=: K(|x|)|u|p+2.

From [Ban07] (see Section 2), we have global existence for p < 4
d and finite time blow-up for 4

d ≤ p <
4
d−2 .

We make a soliton ansatz for (4.1) in Rd: u(x, t) = eiλtRλ, for a function Rλ depending on a real
parameter (the soliton parameter) λ > 0. Plugging this ansatz into the conjugated equation (4.1) we see
we must have

−∆̃Rλ +

(
(d− 1)2

4
+ λ+ Vd(r)

)
Rλ − f̃(x,Rλ) = 0.

Hence, we seek a minimizer of the associated energy functional (4.2) to this nonlinear elliptic equation for
‖u‖L2 fixed.

We note that the continuous spectrum is “shifted” according to the term

−
(
d− 1

2

)2

u.

In the end, this term does not alter the existence argument for soliton solutions, however, it does expand
the allowed range of soliton parameters from λ ∈ (0,∞) to

λ ∈ (−
(
d− 1

2

)2

,∞),

so henceforward we set

µd = λ+

(
d− 1

2

)2

> 0.
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5. Concentration compactness and existence of minimizers

We recall the celebrated concentration compactness lemma of P.L. Lions, [Lio84a]:

Lemma 5.1 (Concentration Compactness). Let (ρn)n≥1 be a sequence in L1(Rd) satisfying:

ρn ≥ 0 in Rd,
∫
Rd

ρndx = δ

where δ > 0 is fixed. Then there exists a subsequence (ρnk
)k≥1 satisfying one of the three following

possibilities:

i. (compactness) there exists yk ∈ Rd such that ρnk
(·+ ynk

) is tight, i.e.:

∀ε > 0, ∃R <∞,
∫
yk+BR

ρnk
(x)dx ≥ δ − ε;

ii. (vanishing) limk→∞ supy∈Rd

∫
y+BR

ρnk
(x)dx = 0, for all R <∞;

iii. (dichotomy) there exists α ∈ [0, δ] such that for all ε > 0, there exists k0 ≥ 1 and ρ1
k, ρ

2
k ∈ L1

+(Rd)
satisfying for k ≥ k0:{

‖ρnk
− (ρ1

k + ρ2
k)‖L1 ≤ ε, |

∫
Rd ρ

1
kdx− α| ≤ ε, |

∫
Rd ρ

2
kdx− (δ − α)| ≤ ε

d(Supp(ρ1
k),Supp(ρ2

k))→∞.

We want to apply this in the setting of hyperbolic solitons. We have reduced the problem to minimizing
energy functionals on Rd with the addition of an angular derivative term and a potential. However, we
have also seen that any minimizer must be radial, hence the angular term will vanish. That means we are
left with a minimization problem with potential on Rd, for which there is a theory. We summarize the
basic technique, then we’ll indicate how to apply it in the present setting.

To begin, let us look at the basic energy functionals

E1(u) =

∫
Rd

[
1

2
|∇u|2 +

1

2
c1(x)|u|2 − F (x, u)

]
dx,

where F (x, t) =
∫ t

0
f(x, s)ds and f is the nonlinearity and

E2(u) =

∫
Rd

[
1

2
|∇u|2 +

1

2
c2(x)|u|2

]
dx.

Define

Iδ = inf{E1(u) : u ∈ H1(Rd), ‖u‖2L2 = δ}

and

Jδ = inf{E2(u) : u ∈ H1(Rd),
∫
F (x, u)dx = δ}.

For E1, we assume{
c+1 ∈ L1

loc, ∀δ > 0, c+1 1(c1≥δ) ∈ Lq1 with max
{
d
2 , 1
}
≤ q1 <∞,

c−1 ∈ Lq2 + Lq3 with max
{
d
2 , 1
}
≤ q2, q3 <∞

(5.1)

and {
f(x, t) ∈ C(Rd × R), f(x, t)→ f̄(t) as|x| → ∞ uniformly for t bounded,

lim|t|→0 F (x, t)t−2 = 0, lim|t|→∞ F (x, t)|t|−d∗ = 0 uniformly in x ∈ Rd,(5.2)
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with

d∗ =
2d+ 4

d
.

For Jδ, we assume 0 < p < 4
d−2 , the integrated nonlinearity takes the form

F (x, u) = K(x)|u|p+2,

and  c+2 ∈ L1
loc, c

−
2 ∈ Lq for d

2 ≤ q <∞, c
+
2 → c̄2 > 0 as |x| → ∞,

∃ν > 0, ∀u ∈ S, E2(u) ≥ ν‖u‖2H1 ,
K ∈ C(Rd), K+ > 0 for some x ∈ Rd, K → K̄ ∈ R as |x| → ∞.

(5.3)

We define

I∞δ = inf{E∞1 (u) : u ∈ H1(Rd), ‖u‖2L2 = δ},

where

E∞1 (u) =

∫
Rd

[
1

2
|∇u|2 − F̄ (u)

]
dx,

for

F̄ =

∫ t

0

f̄(s)ds.

Define J∞δ in a similar fashion with the convention that if K̄ = 0, J∞δ = ∞. Then, we can state the
following theorems due to Lions in [Lio84b].

Theorem 7 (Lions). The strict subadditivity inequality

Iδ < Iα + I∞δ−α, ∀α ∈ [0, δ)(5.4)

is a necessary and sufficient condition for the relative compactness in H1 of all minimizing sequences of
Iδ. In particular, if the subadditivity property holds, there exists a minimum for Iδ.

Theorem 8 (Lions). Assume (5.1) and (5.2) hold. If F (x, t) = K(x)|t|p1 with K ∈ C(Rd), K(x) → 0 as
|x| → ∞ and 0 < p < 4

d , then (5.4) holds if and only if Iδ < 0.

Theorem 9 (Lions). Assume (5.3) holds. For 0 < p < 4
d−2 , d ≥ 2, all minimizing sequences of Jδ are

relatively compact in H1 if and only if

Jδ < J∞δ .

Remark 5.1. The constrained minimization problem for Jδ is used to prove existence of solitons, which
explains the ranges of p in Theorem 1. However, we consider also the constrained minimization problem
for Iδ, which is used to prove orbital stability in Proposition 6.3.

We now examine how to apply these theorems in our case. For d ≥ 3, the potential Vd(|x|) ≤ 0 for all
x and a(x) ≤ 0, hence from the arguments in Lemma 3.2, taking a Schwarz symmetrization decreases the
energy functionals E1 and E2. Hence, a radial minimizer for Iδ and Jδ may be obtained.
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In the case of the hyperbolic soliton equations, we have from above

c1(x) = Vd(|x|)

= − (d− 1)(d− 3)

4

sinh2 r − r2

r2 sinh2 r
,

c2(x) = Vd(|x|) + µd, and

F (x, u) = K(|x|)|u|p+2,

with

K(|x|) =
1

p+ 2

(
|x|

sinh |x|

)(d−1)p/2

as usual. Note we have for d ≥ 4, c1 ≤ 0 and

λ+
(d− 1)2

4
≥ c2(x) ≥ λ+

d(d− 1)

6
,

while for d = 3, c1 = 0 and c2 = λ+ (d− 1)2/4, and for d = 2, c1 ≥ 0, and

λ+
1

3
≥ c2 ≥ λ+

1

4
.

Hence, we see if 0 < p < 4/d,

(i) c1 ∈ L1
loc, c1 ∈ Lq ∀q >

d

2
,

(ii) lim
t→0

F (x, t)t−2 = 0, lim
t→∞

F (x, t)t−d
∗

= 0, and

(iii) f(x, t)→ 0 as |x| → ∞ uniformly for t bounded.

Also,

I∞δ = inf{1

2

∫
|∇u|2dx : u ∈ H1(Rd), ‖u‖2L2 = δ},

so I∞δ = 0 by a simple scaling argument. As a result, the subadditivity condition becomes

Iδ < 0.

We note that this sub-additivity condition holds for a sufficiently large mass, but is not true in general,
see [CMMT14], Appendix 3.

In the case of Jδ, for the K resulting from hyperbolic geometry, we have K̄ = 0 and hence J∞δ = ∞.
Also, note that in the notation for E2, we have

c2(x) = µd + Vd(x),

so the assumptions (5.3) are satisfied provided λ > (d− 1)2/4. Indeed, the only thing to check is that E2
is bounded below by ν‖u‖2H1 for some ν > 0. But for λ > (d− 1)2/4, the set where c2 ≤ 0 is bounded, so
the lower bound on E2 follows from the Galiardo-Nirenberg-Sobolev inequality.

As the case K̄ = 0 represents an extremal case of the concentration compactness formulation for E2, we
present the proof here for completeness.

Lemma 5.2. There exists a non-trivial minimizer for Jδ.

Proof. The fact that compactness implies subadditivity is a standard result of concentration compactness
found in [Lio84a].
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Hence, we seek to prove that subadditivity implies compactness. Let (un)n be a minimizing sequence

for Jδ. As ‖un‖H1 is bounded, we have ‖un‖p+2
Lp+2 =: βn bounded, since p < 4/(d − 2). Then, select a

subsequence if necessary such that

βn → β̃ > 0.

Define ρn = β−1
n |un|p+2. Then, ∫

ρndx = 1

and we may apply Lemma 5.1.

First, let us rule out the vanishing condition. If

sup
y∈Rd

∫
y+BR

|ρn|p+2dx→ 0, ∀R <∞,

then ρn → 0 in Lα for p+ 2 < α < 2 + 4
d−2 = d∗ by standard functional analytic arguments from Lemma

I.1 in [Lio84b]. By assumption, ‖un‖L2 is bounded for all n hence by interpolation, un → 0 in Lp+2 and
Kup+2

n → 0 in L1 contradicting the constraint.

Next, we must rule out dichotomy. If such a dichotomy exists, it is clear that either

Jδ ≥ J∞δ1 + Jδ2 =∞

or

Jδ ≥ J∞δ2 + Jδ1 =∞,

both of which provide a contradiction to the obvious fact that Jδ < ∞ as well as the sub-additivity
condition.

Finally, we have ∃yk such that ∀ε > 0, ∃R such that∫
yk+BR

ρk(x)dx ≥ βn − ε.

As βn and ‖un‖H1 are bounded, we have ‖un‖Lp+2 bounded, hence if |yk| → ∞ we get a contradiction to
the constraint ∫

Kup+2
n dx = δ.

As a result, |yk| is bounded. Hence, un(yn + ·) converges strongly in Lp+2 and weakly in H1 to some
u ∈ H1 satisfying the constraint. From here, relative compactness follows.

�

6. Soliton properties and stability

Since we know our soliton is spherically symmetric, we show in this section that we have exponential
decay and C2 smoothness. These results follow from the standard ODE and maximum principle arguments
of [BL83], with the superficial modification that our nonlinearity depends on r but decays at infinity. This
is summarized in the following Lemmas.

Lemma 6.1. If u is a spherically symmetric minimizer of the constrained minimization problems Iδ or
Jδ, then

u ∈ C2(Rd)



HYPERBOLIC SOLITONS 15

and

|Dαu| ≤ Ce−δ|x|, x ∈ Rd

for C, δ > 0 and |α| ≤ 2.

Lemma 6.2. There exists some δ > 0 such that

|Dαu(x)| ≤ Ce−δ|x|,

for some C and |α| ≤ 2.

We now proceed to prove orbital stability of solitons. Though we will get existence for any p < 4
d−2 , we

will be able to show orbital stability for p < 4
d using the arguments of [CL82] and the Gagliardo-Nirenberg

Inequality. We will denote by S the set of solutions to the minimization problem Iδ.

Proposition 6.3 (Orbital Stability). Given p < 4
d and λ > −

(
d−1

2

)2
sufficiently large such that Iλ < 0,

for all ε > 0, there exists a δ > 0 such that if

inf
γ
‖u0(Ω)− eiγRλ(Ω)‖H1(Hd) < δ,

then the corresponding solution u(Ω, t) of (4.1) satisfies

inf
ϕ∈S
‖u(Ω, t)− ϕ‖H1(Hd) < ε.

Proof following [CL82]. Let us take u0 as initial data for (4.1) after conjugation to Euclidean space. As
mentioned previously, we have the conserved quantities

Q(u) = Q(u0)

and

E(u) = E(u0).

We wish to show

∀ε > 0, ∃η > 0, inf
ϕ∈S
‖u0 − ϕ‖H1 < η =⇒ inf

ϕ∈S
‖u(t, ·)− ϕ‖H1 < ε.

Assume for a moment that ‖u0‖L2 = δ, and assume for the purpose of contradiction that orbital stability
is false. Then, there exist ε0 > 0, un0 and tn ≥ 0 such that{

un0 ∈ H1, ‖un0‖L2 = δ, E(un0 )→ Iδ
infϕ∈S ‖un(tn, ·)− ϕ‖H1 ≥ ε0.

However, from the conservation laws we know

E(un(tn))→ Iδ, ‖un(tn)‖L2 = δ.

Hence, un(tn, ·) is relatively compact in H1, so

inf
ϕ∈S
‖un(tn, ·)− ϕ‖H1 → 0

and we arrive at a contradiction.

If ‖u0‖L2 6= δ, then repeat the argument with S defined to be the set of solutions to I‖u0‖L2
and apply

continuity with respect to δ.

�
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Remark 6.1. If Rλ is shown to be the unique radial minimizer, the resulting statement of the theorem
would read

inf
γ
‖u(Ω, t)− eiγRλ(Ω)‖H1(Hd) < ε.

Remark 6.2. There is a much stronger notion of stability referred to as asymptotic stability or scattering
which is given by the following definition.

Definition 6.4. Let

u0(Ω) = eiγ0Rλ0(Ω) + ϕ(Ω).

Then, the corresponding solution u(Ω, t) of (4.1) is said to be asymptotically stable if there exists w(Ω) ∈
L2(Hd) and σ∞ = (λ∞, γ∞) such that

lim
t→∞

‖u(Ω, t)− eiγ∞Rλ∞(Ω)− ei t2 ∆Hdw‖L2(Hd) = 0.

In the present note we do not prove asymptotic stability, however it is possible to outline the necessary
spectral results. Namely, this sort of stability is proved by linearizing about the soliton, proving dispersive
estimates for the resulting skew-symmetric matrix Hamiltonian operator H, using the modulation param-
eters to guarantee orthogonality to any discrete spectrum of H, and finally doing a standard contraction
map on the coupled infinite dimensional and finite dimension system. In order to linearize effectively, we
must have a nonlinearity β such that β′′(s) is bounded for small s. Then, the resulting linearized operator
H must have a well-understood and well-behaved spectrum.

Explicitly, we use the ansatz

ψ = eiλt(Rλ + ϕ(x, t)).

For simplicity, set R = Rλ. Inserting this into the equation we know that since ϕ is a soliton solution we
have

i(ϕ)t + ∆Hd(ϕ) = −β(R2)ϕ− 2β′(R2)R2Re(ϕ) +O(ϕ2),(6.1)

by splitting ϕ up into its real and imaginary parts, then doing a Taylor Expansion. Hence, if ϕ = u+ iv,
we get

∂t

(
u
v

)
= H

(
u
v

)
,(6.2)

where

H =

(
0 L−
−L+ 0

)
,(6.3)

where

L− = −∆Hd + λ− β(Rλ)

and

L+ = −∆Hd + λ− β(Rλ)− 2β′(R2
λ)R2

λ.

Set µ = λ+ (d−1)2

4 .

Definition 6.5. A Hamiltonian, H is called admissible if the following hold:
1) There are no embedded eigenvalues in the essential spectrum,
2) The only real eigenvalue in [−µ, µ] is 0,
3) The values ±λ are not resonances.
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Definition 6.6. Let (NLS) be taken with nonlinearity β. We call β admissible if there exists a minimal
mass soliton, Rmin, for (NLS) and the Hamiltonian,H, resulting from linearization aboutRmin is admissible
in terms of Definition 6.5.

The spectral properties we need for the linearized Hamiltonian equation in order to prove stability results
are precisely those from Definition 6.5.

7. Other nonlinearities

Note that much of the analysis above is in a sense simpler than in the Euclidean case because in our
energy functional, the potentials and coefficients involve terms which decay at spatial infinity, and the
nonlinearity, once conjugated to Euclidean space, decays exponentially. Hence if we have a nonlinearity of
the form

g(Ω)|u|pu,(7.1)

where g(Ω) is now allowed to grow exponentially at a rate slower than(
sinh r

r

)(d−1)p/2

,

it is actually closer to the Euclidean case. In other words, our techniques extend trivially to show solitons
exist with extremely powerful nonlinearities, growing exponentially at spatial infinity. It is unclear then
whether simple power nonlinearities as in (1.1), or exponentially growing nonlinearities as in (7.1) are more
“physical”, as they resemble the Euclidean case more.

Saturated nonlinearities are of the form

f(s) = sq
sp−q

1 + sp−q
,(7.2)

where p > 2 + 4
d and 4

d > q > 0 for d ≥ 3 and ∞ > p > 2 + 4
d >

4
d > q > 0 for d < 3.

Remark 7.1. For |u| large, the behavior is L2 subcritical and for |u| small, the behavior is L2 supercritical.
For the case of asymptotic stability, p is chosen much larger than the L2 critical exponent, 4

d in order to
allow sufficient regularity when linearizing the equation.

Then, upon conjugation by ϕ, we have

f(x, |u|) = ϕq−1 |u|p−1

ϕq−p + |u|p−q
.

Since

ϕq−p > 1

and

lim
x→∞

ϕq−p(x) =∞,

using similar techniques to those above we may prove similar soliton existence results for all µ. However,
similar to the Euclidean study of saturated nonlinearities, solitons for µ large will be stable and solitons
for µ small will be unstable.
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