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Abstract. We prove a quantum ergodic restriction theorem for the Cauchy

data of a sequence of quantum ergodic eigenfunctions on a hypersurface H

of a Riemannian manifold (M, g). The technique of proof is to use a Rellich
type identity to relate quantum ergodicity of Cauchy data on H to quantum

ergodicity of eigenfunctions on the global manifold M . This has the interesting
consequence that if the eigenfunctions are quantum unique ergodic on the
global manifold M , then the Cauchy data is automatically quantum unique
ergodic on H with respect to operators whose symbols vanish to order one on

the glancing set of unit tangential directions to H.

1. Introduction

This article is concerned with the QER (quantum ergodic restriction) problem for
hypersurfaces in compact Riemannian manifolds (M, g). We consider the eigenvalue
problem on M







−∆gϕj = λ2
jϕj , 〈ϕj , ϕk〉 = δjk

Bϕj = 0 on ∂M
,

where 〈f, g〉 =
∫

M
fḡdV (dV is the volume form of the metric) and where B is

the boundary operator, e.g. Bϕ = ϕ|∂M in the Dirichlet case or Bϕ = ∂νϕ|∂M
in the Neumann case. We also allow ∂M = ∅. We introduce the Planck constant
hj = λ−1

j ; for notational simplicity we often drop the subscript j. We then denote

the eigenfunctions in the orthonormal basis by ϕh and the eigenvalues by h−2, so
that the eigenvalue problem takes the semi-classical form,

(1.1)







(−h2∆g − 1)ϕh = 0,

Bϕh = 0 on ∂M
,

where B = I or B = hDν in the Dirichlet or Neumann cases respectively. Also, ∆g

denotes the negative Laplacian, e.g. on flat Rn it denotes
∑n

j=1
∂2

∂x2
j

.

Let H ⊂ M be a smooth hypersurface which does not meet ∂M if ∂M 6= ∅. The
main result of this article (Theorem 1) is that the semiclassical Cauchy data

(1.2) CD(ϕh) := {(ϕh|H , hDνϕh|H)}

of eigenfunctions is always quantum ergodic along any hypersurface H ⊂ M if
the eigenfunctions are quantum ergodic on the global manifold M . The proof is a
generalization of the boundary case where H = ∂M , which was proved in [HaZe]
and in [Bu]. Our proof is modeled on that of [Bu], developing ideas of [GL] (see
also [CTZ2] for an abstract microlocal approach). This automatic QER property
of Cauchy data stands in contrast to the conditional nature of the QER property
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for the Dirichlet data alone, which requires an “asymmetry” condition on H with
respect to geodesics [TZ1, TZ2, DZ]. Note that in the boundary case H = ∂M ,
the Dirichlet resp. Neumann boundary condition kills one of the two components
of the Cauchy data, so that the Cauchy data QER theorem appears the same as
the QER theorem for Neumann data (resp. Dirichlet data) alone.

As emphasized below the statement of Theorem 1, the deduction of quantum
ergodicity of the Cauchy data from quantum ergodicity of the sequence of ambient
eigenfunctions holds for the full original sequence. Hence, if the original sequence
is a complete orthonormal basis of eigenfunctions, i.e. if ∆g is QUE (quantum
uniquely ergodic), then the Cauchy data of the full orthonormal basis is also QUE
on H for any embedded orientable separating hypersurface H. We refer to this
as the QUER property. However, it is not necessarily the case that the Cauchy
data is QUER for the full algebra of pseudo-differential operators. In Corollary
1.1 it is proved that QUE on (M, g) implies QUER with respect to the subalgebra
of semiclassical pseudodifferential operators on H whose symbols vanish to order
1 along S∗H. The restriction on the symbols arises because the passage from
QUE in the ambient manifold to QUER on the hypersurface involves multiplying
the symbols by a certain factor which vanishes to order one on S∗H, i.e. the
unit directions (co-)tangent to H. Therefore, QUE in the ambient manifold does
not imply QUER for all pseudodifferential operators on H, and indeed the test
operators damp out the possible modes which concentrate microlocally on H. We
nevertheless refer to it as a QUER property because it holds for the entire sequence
of eigenfunctions; there is no need to remove a subsequence of density zero for the
subalgebra limits.

To state the results precisely, we introduce some notation. We work with the
semiclassical calculus of pseudo-differential operators as in the references [Bu, DZ,
HaZe, TZ1, Zw]; see also §4 for background. On both H and M we fix (Weyl)
quantizations a → aw of semi-classical symbols to semi-classical pseudo-differential
operators. When it is necessary to indicate which manifold is involved, we ei-
ther write OpH(a) for pseudo-differential operators on H or we use capital letters
Aw(x, hD) to indicate operators on M and small letters aw(y, hDy) to indicate
operators on H.

A sequence of functions uhj
on a manifold M indexed by a sequence of Planck

constants is said to be quantum ergodic with limit measure dµ if

〈aw(x, hjDx)uj , uj〉 → ω(a0) :=

∫

T∗M

a0dµ,

for all zeroth order semi-classical pseudo-differential operators, where a0 is the
principal symbol of aw(x, hjDx). In the classical case of compact Riemannian
manifolds (M, g) with ergodic geodesic flow of [Sch, Zel, CdV, ZZ], the {uj} were a
subsequence of density one of an orthonormal basis of eigenfunctions of ∆g and dµ
is normalized Liouville measure on S∗M . The functional a → 〈aw(x, hjDx)uj , uj〉
is often referred to as a microlocal lift (or a Wigner distribution), and the limit
measure or state ω(a) is often called a quantum limit or a semi-classical defect
measure. Thus, we use the term ‘quantum ergodic sequence’ in this article to mean
a sequence of functions whose microlocal lifts have a unique weak* limit. For the
results of this article, it is not necessary to assume that the geodesic flow is ergodic;
we show that that Cauchy data of a quantum ergodic sequence of eigenfunctions in
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the ambient space M are quantum ergodic on H, no matter what mechanism leads
to quantum ergodicity of the original sequence.

We introduce a hypersurface H, which we assume to be orientable, embedded,
and separating in the sense that

M\H = M+ ∪M−

where M± are domains with boundary in M . This is not a restrictive assumption
since we can arrange that any hypersurface is part of the boundary of a domain.

Given a quantization a → OpH(a) of semi-classical symbols a ∈ S0
sc(H) of order

zero (see Appendix 4) to semi-classical pseudo-differential operators on L2(H),
we define the microlocal lifts of the Neumann data as the linear functionals on
a ∈ S0

sc(H) given by

µN
h (a) :=

∫

B∗H

a dΦN
h := 〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H).

We also define the renormalized microlocal lifts of the Dirichlet data by

µD
h (a) :=

∫

B∗H

a dΦRD
h := 〈OpH(a)(1 + h2∆H)ϕh|H , ϕh|H〉L2(H).

Finally, we define the microlocal lift dΦCD
h of the Cauchy data to be the sum

(1.3) dΦCD
h := dΦN

h + dΦRD
h .

Here, h2∆H denotes the negative tangential Laplacian for the induced metric on
H, so that the operator (1 + h2∆H) is characteristic precisely on the glancing set
S∗H of H. Intuitively, we have renormalized the Dirichlet data by damping out
the whispering gallery components.

The distributions µN
h , µD

h are asymptotically positive, but are not normalized to
have mass one and may tend to infinity. They depend on the choice of quantization,
but their possible weak* limits as h → 0 do not, and the results of the article are
valid for any choice of quantization. We refer to §4 or to [Zw] for background on
semi-classical microlocal analysis.

Our first result is that the Cauchy data of a sequence of quantum ergodic eigen-
functions restricted to H is automatically QER for semiclassical pseudodifferential
operators with symbols vanishing on the glancing set S∗H, i.e. that

dΦCD
h → ω,

where

ω(a) =
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1− |ξ′|2)1/2dσ

is the limit state of Theorem 1. This was proved in a different way in [TZ1] in the
case of piecewise smooth Euclidean domains. The assumption H ∩ ∂M = ∅ is for
simplicity of exposition and because the case H = ∂M is already known.

Theorem 1. Suppose H ⊂ M is a smooth, codimension 1 embedded orientable
separating hypersurface and assume H ∩ ∂M = ∅. Assume that {ϕh} is a quantum
ergodic sequence of eigenfunctions (1.1). Then the sequence {dΦCD

h } (1.3) of mi-
crolocal lifts of the Cauchy data of ϕh is quantum ergodic on H in the sense that
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for any a ∈ S0
sc(H),

〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H) +
〈

OpH(a)(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

→h→0+
4

µ(S∗M)

∫

B∗H
a0(x

′, ξ′)(1− |ξ′|2)1/2dσ,

where a0(x
′, ξ′) is the principal symbol of OpH(a), −h2∆H is the induced tangential

(semiclassical) Laplacian with principal symbol |ξ′|2, µ is the Liouville measure on
S∗M , and dσ is the standard symplectic volume form on B∗H.

Remark. We emphasize that the limit along H in Theorem 1 holds for the full
sequence {ϕh}. Thus, if the full sequence of eigenfunctions is known to be quantum
ergodic, i.e. if the sequence is QUE, then the conclusion of the theorem applies to
the full sequence of eigenfunctions.

We also remark that although we do not state it formally, Theorem 1 (and
indeed all the results in this paper) apply equally well to quasimodes, that is, to
approximate eigenfunctions satisfying

‖(−h2∆g − 1)ϕh‖L2 = o(h)‖ϕh‖L2

as h → 0+.

The proof simply relates the interior and restricted microlocal lifts and reduces
the QER property along H to the QE property of the ambient manifold. If we
assume that QUE holds in the ambient manifold, we automatically get QUER,
which is our first Corollary:

Corollary 1.1. Suppose that {ϕh} is QUE on M . Then the distributions {dΦCD
h }

have a unique weak* limit

ω(a) :=
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1− |ξ′|2)1/2dσ.

We note that dΦCD
h involves the microlocal lift dΦRD

h rather than the microlocal
lift of the Dirichlet data. However, in Theorem 2, we see that the analogue of
Theorem 1 holds for a density one subsequence if we use the further renormalized
distributions dΦD

h +dΦRN
h where the microlocal lift dΦD

h ∈ D′(B∗H) of the Dirichlet
data of ϕh is defined by

∫

B∗H

a dΦD
h := 〈OpH(a)ϕh|H , ϕh|H〉L2(H),

and
∫

B∗H

a dΦRN
h := 〈(1 + h2∆H + i0)−1OpH(a)hDνϕh|H , hDνϕh|H〉L2(H).

Theorem 2. Suppose H ⊂ M is a smooth, codimension 1 embedded orientable
separating hypersurface and assume H ∩ ∂M = ∅. Assume that {ϕh} is a quantum
ergodic sequence. Then, there exists a sub-sequence of density one as h → 0+ such
that for all a ∈ S0

sc(H),
〈

(1 + h2∆H + i0)−1OpH(a)hDνϕh|H , hDνϕh|H
〉

L2(H)
+ 〈OpH(a)ϕh|H , ϕh|H〉L2(H)

→h→0+
4

µ(S∗M)

∫

B∗H
a0(x

′, ξ′)(1− |ξ′|2)−1/2dσ,

where a0(x
′, ξ′) is the principal symbol of OpH(a).
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The additional step in the proof is a pointwise local Weyl law as in [TZ1] section
8.4 showing that only a sparse set of eigenfunctions could scar on the glancing
set S∗H. This is precisely the step which is not allowed in the QUER problem.
Therefore, QUER for all OpH(a) might fail for this rescaled problem; to determine
whether it holds for all OpH(a) we would need a new idea. However, the following
is a direct consequence of Theorem 2.

Corollary 1.2. Suppose that {ϕh} is QUE on M . Then the distributions {dΦD
h +

dΦRN
h } have a unique weak* limit

ω(a) :=
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1− |ξ′|2)−1/2dσ

with respect to the subclass of symbols which vanish on S∗H.

We prove Theorem 1 by means of a Rellich identity adapted from [GL, Bu]. It
is also possible to prove the theorem using the layer potential approach in Step
2 (Proof of (7.4)) in section 7 of [HaZe]. To adapt this proof, one would need
to introduce a semi-classical Green’s function in place of the Euclidean Green’s
function, verify that it has the properties of the latter in section 4 of [HaZe], and
then go through the proof of Step 2. Despite the authors’ fondness for the layer
potential approach, this proof is much longer than the infinitesimal Rellich identity
approach and we have decided to omit the details.

Acknowledgements. The first version of this article was written at the same time
as [TZ1, TZ2] but its completion was post-poned while the authors proved the QER
phenomenon for Dirichlet data alone. We were further stimulated to complete the
article by a discussion with Peter Sarnak at the Spectral Geometry conference at
Dartmouth in July, 2010 in which we debated whether QUE in the ambient domain
implies QUER along H. We said ‘yes’, Sarnak said ‘no’; Corollaries 1.1 and 1.2
explain the sense in which both answers are right.

The research of H.C. was partially supported by NSF grant # DMS-0900524; J.T.
was partially supported by NSERC grant # OGP0170280 and a William Dawson
Fellowship; S.Z. was partially supported by NSF grant # DMS-0904252.

2. Rellich approach: Proof of Theorem 1

We have assumed H is a separating hypersurface, so that H is the boundary of
a smooth open submanifold of M , H = ∂M+ ⊂ M . There is no loss of generality
in this assumption, since we may always use a cutoff to a subset of H. We then
use a Rellich type identity to write the integral of a commutator over M+ as a
sum of integrals over the boundary (of course the same argument would apply on
M− = M \M+). The argument is partially motivated by Burq’s proof of boundary
quantum ergodicity (ie. the case H = ∂M).

Let x = (x1, ..., xn−1, xn) = (x′, xn) be Fermi normal coordinates in a small
tubular neighbourhoodH(ǫ) ofH defined near a point x0 ∈ H. In these coordinates
we can locally write

H(ǫ) := {(x′, xn) ∈ U × R, |xn| < ǫ}.

Here U ⊂ R
n−1 is a coordinate chart containing x0 ∈ H and ǫ > 0 is arbitrarily

small but for the moment, fixed. We let χ ∈ C∞
0 (R) be a cutoff with χ(x) = 0 for
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|x| ≥ 1 and χ(x) = 1 for |x| ≤ 1/2. In terms of the normal coordinates,

−h2∆g =
1

g(x)
hDxn

g(x)hDxn
+R(xn, x

′, hDx′)

where, R is a second-order h-differential operator along H with coefficients that
depend on xn, and R(0, x′, hDx′) = −h2∆H is the induced tangential semiclassical
Laplacian on H.

Let A(x, hDx) ∈ Ψ0
sc(M) be an order zero semiclassical pseudodifferential oper-

ator on M (see 4). By Green’s formula and (1.1) we get the Rellich identity

i

h

∫

M+

(

[−h2∆g, A(x, hDx)]ϕh(x)
)

ϕh(x) dx(2.1)

=

∫

H

(hDν A(x
′, xn, hDx)ϕh|H)ϕh|H dσH

+

∫

H

(A(x′, xn, hDx)ϕh|H)hDνϕh|H dσH .

Here, Dxj
= 1

i
∂

∂xj
, Dx′ = (Dx1

, ..., Dxn−1
), Dν = 1

i ∂ν where ∂ν is the interior unit

normal to M+.
Given a ∈ S0,0(T ∗H × (0, h0]), we then choose

A(x′, xn, hDx) = χ(
xn

ǫ
)hDxn

aw(x′, hD′).

Since χ(0) = 1 it follows that the second term on the right side of (2.1) is just

(2.2) 〈aw(x′, hD′)hDxn
ϕh|H , hDxn

ϕh|H〉 .

The first term on right hand side of (2.1) equals

∫

H

hDn(χ(xn/ǫ)hDna
w(x′, hD′)ϕh)

∣

∣

∣

xn=0
ϕh

∣

∣

∣

xn=0
dσH

(2.3)

=

∫

H

(

χ(xn/ǫ)a
w(x′, hD′)(hDn)

2ϕh +
h

iǫ
χ′(xn/ǫ)hDna

w(x′, hD′)ϕh

)∣

∣

∣

xn=0
ϕh

∣

∣

∣

xn=0
dσH

=

∫

H

(χ(xn/ǫ)a
w(x′, hD′)(1−R(xn, x

′, hD′))ϕh)
∣

∣

∣

xn=0
ϕh

∣

∣

∣

xn=0
dσH +Oǫ(h),

since χ′(0) = 0 and ((hDn)
2 +R+O(h))ϕh = ϕh in these coordinates.

It follows from (2.1)-(2.3) that

〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H) +
〈

OpH(a)(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

(2.4)

=
〈({

ξ2n +R(xn, x
′, ξ′), χ(

xn

ǫ
)ξna(x

′, ξ′)
})w

ϕh, ϕh

〉

L2(M+)
+Oǫ(h).

(2.5)

We now assume that ϕh is a sequence of quantum ergodic eigenfunctions, and
take the h → 0+ limit on both sides of (2.4). We apply interior quantum ergodicity
to the term on the right side of (2.4). We compute
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(2.6)

{

ξ2n +R(xn, x
′, ξ′), χ(xn

ǫ )ξna(x
′, ξ′)

}

= 2
ǫχ

′(xn

ǫ )ξ2na(x
′, ξ′)

+χ(xn

ǫ )R2(x
′, xn, ξ

′),

where R2 is a zero order symbol. Let χ2 ∈ C∞ satisfy χ2(t) = 0 for t ≤ −1/2,
χ2(t) = 1 for t ≥ 0, and χ′

2(t) > 0 for−1/2 < t < 0, and let ρ be a boundary defining
function for M+. Then χ2(ρ/δ) is 1 on M+ and 0 outside a δ/2 neighbourhood.
Now the assumptions that the sequence ϕh is quantum ergodic implies that the
matrix element of the second term on the right side of (2.6) is bounded by

∣

∣

∣
〈(χ(xn/ǫ)R2(x, ξ

′) )wϕh, ϕh〉L2(M+)

∣

∣

∣

≤ ‖χ2(ρ/δ)χ(xn/ǫ)ϕh‖L2(M)‖χ̃2(ρ/δ)χ̃(xn/ǫ)ϕh‖L2(M)

= Oδ(ǫ) + oδ,ǫ(1),

where χ̃ and χ̃2 are smooth, compactly supported functions which are one on the
support of χ and χ2 respectively. Here, the last line follows from interior quantum
ergodicity of the ϕh since the volume of the supports of χ(xn/ǫ) and χ̃(xn/ǫ) is
comparable to ǫ.

To handle the matrix element of the first term on the right side of (2.6), we note
that χ′(xn/ǫ)|M+

= χ̃′(xn/ǫ) for a smooth function χ̃ ∈ C∞(M) satisfying χ̃ = 1 in
a neighbourhood of M \M+ and zero inside a neighbourhood of H. Then, again
by interior quantum ergodicity, we have

2

〈(

1

ǫ
χ′(

xn

ǫ
) ξ2na(x

′, ξ′)

)w

ϕh, ϕh

〉

L2(M+)

(2.7)

= 2

〈(

1

ǫ
χ̃′(

xn

ǫ
) ξ2na(x

′, ξ′)

)w

ϕh, ϕh

〉

L2(M)

=
2

µ(S∗M)

∫

S∗M

1

ǫ
χ̃′(

xn

ǫ
)(1−R(x′, xn, ξ

′))a(x′, ξ′) dµ+O(ǫ) + oǫ(1)

=
2

µ(S∗M)

∫

S∗M+

1

ǫ
χ′(

xn

ǫ
)(1−R(x′, xn, ξ

′))a(x′, ξ′) dµ+O(ǫ) + oǫ(1),

since χ̃′ and χ′ are supported inside M+. Combining the above calculations yields

〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H) +
〈

OpH(a)(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

(2.8)

=
2

µ(S∗M)

∫

S∗M+

1

ǫ
χ′(

xn

ǫ
)(1−R(x′, xn, ξ

′))a(x′, ξ′) dµ+Oδ(ǫ) + oδ,ǫ(1).

Finally, we take the h → 0+-limit in (2.8) followed by the ǫ → 0+-limit, and
finally the δ → 0+ limit. The result is that, since the left-hand side in (2.8) is
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independent of ǫ and δ,

lim
h→0+

〈OpH(a)hDνϕh|H , hDνϕh|H〉L2(H) +
〈

OpH(a)(1 + h2∆H)ϕh|H , ϕh|H
〉

L2(H)

=
2

µ(S∗M)

∫

S∗

H
M

(1−R(x′, xn = 0, ξ′)) dσ̃

=
4

µ(S∗M)

∫

B∗H

(1− |ξ′|2)1/2a(x′, ξ′)) dσ,

(2.9)

where dσ̃ is the symplectic volume form on S∗
HM , and dσ is the symplectic volume

form on B∗H.
�

3. Proof of Theorem 2 and Corollary 1.2

The proof follows as in Theorem 1 with a few modifications. For fixed ǫ1 > 0 we
choose the test operator

(3.1) A(x′, xn, hDx) := (I + h2∆H(x′, hD′) + iǫ1)
−1χ(

xn

ǫ
)hDxn

aw(x′, hD′)

and since WF ′
h(ϕh|H) ⊂ B∗H (see [TZ2] section 11) it suffices to assume that

a ∈ C∞
0 (T ∗H) with

supp a ⊂ B∗
1+ǫ2

1

(H).

Let χǫ1(x
′, ξ′) ∈ C∞

0 (B∗
1+ǫ2

1

(H) \ B∗
1−2ǫ2

1

(H); [0, 1]) be a cutoff near the glancing

set S∗H with χǫ1(x
′, ξ′) = 1 when (x′, ξ′) ∈ B∗

1+ǫ2
1

(H) \ B∗
1−ǫ2

1

(H). Then, with

A(x, hDx) in (3.1), the same Rellich commutator argument as in Theorem 1 gives
〈

(1 + h2∆H + iǫ1)
−1aw(x′, hD′)(1− χǫ1)

whDνϕh|H , hDνϕh|H
〉

L2(H)
(3.2)

+

〈

aw(x′, hD′)(1− χǫ1)
w

(

1− |ξ′|2

1− |ξ′|2 + iǫ1

)w

ϕh|H , ϕh|H

〉

L2(H)

→
4

µ(S∗M)

∫

B∗H

a0(x
′, ξ′)(1− χǫ1(x

′, ξ′))

(

(1− |ξ′|2)1/2

1− |ξ′|2 + iǫ1

)

dσ.

It remains to determine the contribution of the glancing set S∗H. As in [Bu, DZ,
HaZe, TZ1] we use a local Weyl law to do this. Because of the additional normal
derivative term the argument is slightly different than in the cited articles and so
we give some details. For the rest of this proof, we need to recall that h ∈ {λ−1

j },
and we write hj for this sequence to emphasize that it is a discrete sequence of
values hj → 0. Since ‖aw(x′, hD′)‖L2→L2 = O(1), it follows that for h ∈ (0, h0(ǫ1)]
with h0(ǫ1) > 0 sufficiently small,

1

N(h)

∑

hj≥h

∣

∣

∣
〈aw(x′, hD′)χw

ǫ1ϕhj
|H , ϕhj

|H〉L2(H)

∣

∣

∣
(3.3)

≤ C
1

N(h)

∑

hj≥h

(

‖χw
ǫ1ϕhj

|H‖L2(H) ‖χ
w
2ǫ1ϕhj

|H‖L2(H) +O(h∞
j )

)

≤
C

2

1

N(h)

∑

hj≥h

(

‖χw
ǫ1ϕhj

|H‖2L2(H) + ‖χw
2ǫ1ϕhj

|H‖2L2(H) +O(h∞
j )

)

= O(ǫ21).
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By a Fourier Tauberian argument [TZ1] section 8.4, it follows that for h ∈
(0, h0(ǫ1)]

(3.4)
1

N(h)

∑

hj≥h

|χw
ǫ1,2ǫ1ϕhj

|H(x′)|2 = O(ǫ21)

uniformly for x′ ∈ H. The last estimate in (3.3) follows from (3.4) by integration
over H.

To estimate the normal derivative terms, we first recall the standard resolvent
estimate

‖(1 + h2∆H + iǫ1)
−1u‖H2

h
(H) ≤ Cǫ−1

1 ‖u‖L2(H),

where H2
h is the semiclassical Sobolev space of order 2 (see [Zw] Lemma 13.6).

Applying the obvious embedding H2
h(H) ⊂ L2(H), we recover

‖(1 + h2∆H + iǫ1)
−1u‖L2(H) ≤ C‖(1 + h2∆H + iǫ1)

−1u‖H2
h
(H)

≤ Cǫ−1
1 ‖u‖L2(H)

to get that

1

N(h)

∑

hj≥h

|〈(1 + h2∆H + iǫ1)
−1aw(x′, hD′)χw

ǫ1hjDxn
ϕhj

|H , hjDxn
ϕhj

|H〉L2(H)|

(3.5)

≤ C ′ǫ−1
1

1

N(h)

∑

hj≥h

(

‖χw
ǫ1hDxn

ϕhj
|H‖L2(H) ‖χ

w
2ǫ1hDxn

ϕhj
|H‖L2(H) +O(h∞

j )
)

≤
C ′ǫ−1

1

2

1

N(h)

∑

hj≥h

(

‖χw
ǫ1hDxn

ϕhj
|H‖2L2(H) + ‖χw

2ǫ1hDxn
ϕhj

|H‖2L2(H) +O(h∞
j )

)

= O(ǫ−1
1 ǫ21)

= O(ǫ1).

The last estimate follows again from the Fourier Tauberian argument in [TZ1]
section 8.4, which gives

(3.6)
1

N(h)

∑

hj≥h

|χw
ǫ1,2ǫ1hjDxn

ϕhj
|H(x′)|2 = O(ǫ21)

uniformly for x′ ∈ H.
Since ǫ1 > 0 is arbitrary, Theorem 2 follows from (3.3) and (3.5) by letting

ǫ1 → 0+ in (3.2).
�

3.1. Proof of Corollary 1.2. We now observe that Corollary 1.2 follows almost
immediately from the proof of Theorem 2. To see this, we notice that by restricting
our attention to symbols which vanish on the glancing set, we do not need to pass
through the local Weyl law/Tauberian argument, which is the step by which one
extracts a density one subsequence. Hence the result applies to the full sequence.

�
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4. Appendix

4.1. Semiclassical symbols. Let M be a compact manifold. By a semiclassi-
cal symbol a ∈ Sm,k(T ∗M × [0, h0)), we mean a smooth function possessing an
asymptotic expansion as h → 0 of the form,

(4.1) a(x, ξ, h) ∼h→0+

∞
∑

j=0

ak−j(x, ξ)h
m+j ,

with ak−j ∈ Sk
1,0(T

∗M). Here, Sk
1,0 is the standard Hörmander class consisting of

smooth functions a(x, ξ) satisfying the estimates |∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉

k−|β| for

all multi-indices α, β ∈ Nn. We say that A(h) ∈ Opwh (S
m,k(T ∗M× [0, h0)) provided

its Schwartz kernel is locally of the form

(4.2) A(h)(x, y) = (2πh)−n

∫

Rn

ei〈x−y,ξ〉/ha(
x+ y

2
, ξ, h) dξ

with a ∈ Sm,k. We denote the operator A(h) by aw(x, hDx) (or simply aw). By a
symbol of order zero we mean that a ∈ S0,0, and we refer to a0(x, ξ) as the principal
symbol. In the latter case, we simply write

S0
sc(M) := S0,0, Ψ0

sc(M) := Opwh (S
0,0).

Finally, when H ⊂ M is a hypersurface and a ∈ S0
sc(H), we sometimes write

OpH(a) = aw to indicate dependence on the submanifold, H. We refer to [Zw] for
background.
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